首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel, simple and versatile protocol for covalent immobilization of horseradish peroxidase (HRP) on screen‐printed carbon electrode (SPCE) based on the combination of diazonium salt electrografting and click chemistry has been successfully developed. The ethynyl‐terminated monolayers are obtained by diazonium salt electrografting, then, in the presence of copper (I) catalyst, the ethynyl modified surfaces reacted efficiently and rapidly with horseradish peroxidase bearing an azide function (azido‐HRP), thus forming a covalent 1,2,3‐triazole linkage by means of click chemistry. All the experimental results suggested that HRP was immobilized onto the electrode surface successfully without denaturation. Furthermore, the immobilized HRP showed a fast electrocatalytic reduction for H2O2. A linear range from 5.0 to 50.0 µM in a phosphate buffer (pH 5.5) with detection limit of 0.50 µM and sensitivity of 0.23 nA/µM were obtained. The heterogeneous electron transfer rate constant Kct was 1.52±0.22 s?1 and the apparent Michaelis? Menten constant was calculated to be 0.028 mM. The HRP‐functionalized electrode demonstrated a good reproducibility and long‐term stability.  相似文献   

2.
A stepwise strategy is reported for the design of a meditor-free amperometric tyrosinase biosensor. It is based on the azide-alkyne click reaction and carbodiimide coupling. Firstly, azide-terminated alkane thiols monolayers were self-assembled on the Au electrode surface. Then, nitrophenyl groups were covalent attached to the self-assembled monolayers (SAMs) via the click reaction of copper(I)-catalyzed 1,3-dipolar cycloadditions of azide-alkyne. Finally, the nitrophenyl group terminated SAMs were converted to aminophenyl-terminated interface by electrochemical reduction, and tyrosinase was covalent immobilized onto the Au electrode via carbodiimide reaction. Based on the stepwise strategy, a meditor-free amperometric tyrosinase biosensor was farbricated, and it showed good electrocatalytic reduction ability toward phenol, pyrocatechol and m-Cresol. Their linear ranges were over the range of 0.2 to 15.0 μmol·L?1, 0.2 to 73.0 μmol·L?1, and 0.2 to 33.0 μmol·L?1, respectively.  相似文献   

3.
《Electroanalysis》2004,16(9):730-735
Electrooxidation of thionine on screen‐printed carbon electrode gives rise to the modification of the surface with amino groups for the covalent immobilization of enzymes such as horseradish peroxidase (HRP). The biosensor was constructed using multilayer enzymes which covalently immobilized onto the surface of amino groups modified screen‐printed carbon electrode using glutaraldehyde as a bifunctional reagent. The multilayer assemble of HRP has been characterized with the cyclic voltammetry and the faradaic impedance spectroscopy. The H2O2 biosensor exhibited a fast response (2 s) and low detection limit (0.5 μM).  相似文献   

4.
5.
A macroporous copolymer of glycidyl methacrylate and ethylene glycol dimethacrylate, poly(GMA-co-EGDMA), with various surface characteristics and mean pore size diameters ranging from 44 to 200 nm was synthesized, modified with 1,2-diaminoethane, and tested as a carrier for immobilization of horseradish peroxidase (HRP) by two covalent methods, glutaraldehyde and periodate. The highest specific activity of around 35 U g?1 dry weight of carrier was achieved on poly(GMA-co-EGDMA) copolymers with mean pore diameters of 200 and 120 nm by the periodate method. A study of deactivation kinetics at 65 °C and in 80 % dioxane revealed that periodate immobilization also produced an appreciable stabilization of the biocatalyst, while stabilization factor depended strongly on the surface characteristics of the copolymers. HRP immobilized on copolymer with a mean pore diameter of 120 nm by periodate method showing not only the highest specific activity but also good stability was further characterized. It appeared that the immobilization resulted in the stabilization of enzyme over a broader pH range while the Michaelis constant value (K m) of the immobilized HRP was 10.8 mM, approximately 5.6 times higher than that of the free enzyme. After 6 cycles of repeated use in a batch reactor for pyrogallol oxidation, the immobilized HRP retained 45 % of its original activity.  相似文献   

6.
A novel technique of covalent immobilization of indicator dyes in the preparation of fluorescence sensors is developed. Silver nanoparticles are used as bridges and carriers for anchoring indicator dyes. 3-amino-9-ethylcarbazole (AEC) was employed as an example of indicator dyes with terminal amino groups and covalently immobilized onto the outmost surface of a quartz glass slide. First, the glass slide was functionalized by (3-mercaptopropyl) trimethoxysilane (MPS) to form a thiol-terminated self-assembled monolayer, where silver nanoparticles were strongly bound to the surface through covalent bonding. Then, 16-mercaptohexadecanoic acid (MHDA) was self-assembled to bring carboxylic groups onto the surface of silver nanoparticles. A further activation by using 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) converted the carboxylic groups into succinimide esters. Finally, the active succinimide esters on the surface of silver nanoparticles were reacted with AEC. Thus, AEC was covalently bound to the glass slide and an AEC-immobilized sensor was obtained. The sensor exhibited very satisfactory reproducibility and reversibility, rapid response and no dye-leaching. Rutin can quench the fluorescence intensity of the sensor and be measured by using the sensor. The linear response of the sensor to rutin covers the range from 2.0 × 10−6 to 1.5 × 10−4 mol L−1 with a detection limit of 8.0 × 10−7 mol L−1. The proposed technique may be feasible to the covalent immobilization of other dyes with primary amino groups.  相似文献   

7.
Chen Z  Li L  Zhao H  Guo L  Mu X 《Talanta》2011,83(5):4039-1506
A simple, highly sensitive, and label-free electrochemical impedance spectroscopy (EIS) aptasensor based on an anti-lysozyme-aptamer as a molecular recognition element, was developed for the detection of lysozyme. Improvement in sensitivity was achieved by utilizing gold nanoparticles (AuNPs), which were electrodeposited onto the surface of a gold electrode, as a platform for immobilization of the aptamer. To quantify the amount of lysozyme, changes in the interfacial electron transfer resistance (Ret) of the aptasensor were monitored using the redox couple of an [Fe(CN)6]3−/4− probe. The Ret increased with lysozyme concentration. The plot of Ret against the logarithm of lysozyme concentration is linear over the range from 0.1 pM to 500 pM with a detection limit of 0.01 pM. The aptasensor also showed good selectivity for lysozyme without being affected by the presence of other proteins.  相似文献   

8.
Vastarella W  Nicastri R 《Talanta》2005,66(3):627-633
In this work quantum-sized CdS nanocrystals were synthesized using a quaternary water-in-oil microemulsion and immobilized onto gold working electrode by self-assembled monolayers techniques. Formaldehyde dehydrogenase was covalently immobilized onto a protecting membrane, which was stratified on part of the semiconductor nanoparticles modified electrode. The covalent enzyme immobilization has been required to improve the stability of the catalytic oxidation of formaldehyde, which occurs after light stimulation of the semiconductor through the electron/hole recombination. A study about the best electrochemical oxidation potentials under different flow conditions was performed. Preliminary sensor stability and interferences tests were also carried out, for a sensitive and selective detection of formaldehyde. A detection limit of 41 ppb of formaldehyde was calculated and an operational stability of 6 h was achieved under flow conditions by means of this novel amperometric biosensor based on FDH-semiconductor hybrid systems, not requiring NAD+/NADH as charge transfer in the enzymatic reaction.  相似文献   

9.
Mathebe NG  Morrin A  Iwuoha EI 《Talanta》2004,64(1):115-120
An amperometric biosensor was prepared by in situ deposition of horseradish peroxidase (HRP) enzyme on a polyaniline (PANI)-doped platinum disk electrode. The PANI film was electrochemically deposited on the electrode at 100 mV s−1/Ag-AgCl. Cyclic voltammetric characterization of the PANI film in 1 M HCl showed two distinct redox peaks, which prove that the PANI film was electroactive and exhibited fast reversible electrochemistry. The surface concentration and film thickness of the adsorbed electroactive species was estimated to be 1.85×10−7 mol cm−2 and approximately 16 nm, respectively. HRP was electrostatically immobilized onto the surface of the PANI film, and voltammetry was used to monitor the electrocatalytic reduction of hydrogen peroxide under diffusion-controlled conditions. Linear responses over the concentration range 2.5×10−4 to 5×10−3 M were observed. Spectroelectrochemistry was used to monitor the changes in UV-vis properties of HRP, before and after the catalysis of H2O2. The biosensor surface morphology was characterized by scanning electron microscopy (SEM) using PANI-doped screen-printed carbon electrodes (SPCEs) in the presence and absence of (i) peroxidase and (ii) peroxide. The SEM images showed clear modifications of the conducting film surface structure when doped with HRP, as well as the effect of hydrogen peroxide on the morphology of biosensor.  相似文献   

10.
The surface modification of nanoparticles via azide/alkine-1,3-dipolar cycloaddition-reactions is described. Ligand exchange onto various nanoparticles was monitored by 1H NMR spectroscopy and formed the basis for the attachment of ligands onto the nanoparticles and their subsequent modification by dipolar cycloaddition reactions. Nanoparticle-surfaces were monitored by binding onto self-assembled monolayers derivatized with matching supramolecular interactions after derivatization.  相似文献   

11.
《Comptes Rendus Chimie》2003,6(7):683-688
In this work we have explored the possibilities to create layered organizations of the Mn12 single-molecule magnets using the Langmuir–Blodgett technique or attaching these clusters onto a metal surface by preparing self-assembled monolayers (SAMs). In the first part we discuss the use of the Langmuir–Blodgett (LB) technique in order to obtain organized magnetic films formed by monolayers of these clusters. Two strategies have been used with this aim. The first one consists of mixing Mn12 acetate or benzoate derivatives with an amphiphile, while the second procedure is based on the use of Mn12 derivatives specifically designed to form LB films. An alternative method is that of preparing self-assembled monolayers (SAMs). Some preliminary results obtained with this method are reported in the second part of the work. To cite this article: M. Clemente-León et al., C. R. Chimie 6 (2003).  相似文献   

12.
Summary. The surface modification of nanoparticles via azide/alkine-1,3-dipolar cycloaddition-reactions is described. Ligand exchange onto various nanoparticles was monitored by 1H NMR spectroscopy and formed the basis for the attachment of ligands onto the nanoparticles and their subsequent modification by dipolar cycloaddition reactions. Nanoparticle-surfaces were monitored by binding onto self-assembled monolayers derivatized with matching supramolecular interactions after derivatization.  相似文献   

13.
The polystyrene (P(S)), poly(styrene/acrolein) (P(SA)), and polyacrolein (P(A)) latexes, with varied fraction of polyacrolein in the surface layer (f A=0, 0.50, 0.63, 0.84, 1.00), were used for the attachment of horseradish peroxidase. Surfaces of latexes were modified by reaction with ethylenediamine. In this step the aldehyde groups from polyacrolein were blocked and the primary amino groups were introduced. The carbohydrate portion of HRP was oxidized in the reaction leading to formation of aldehyde groups. The adsorption and covalent immobilization of HRP onto the P(S), P(SA), and P(A) latexes and of the oxidized HRP (HRP-OX) onto the modified latex particles, with amino groups on the surface (P(SA)-M and P(A)-M), were investigated. The activities of parent and oxidized HRP were compared with activities of the corresponding enzymes in solution. It has been found that whereas HRP is not suitable for the covalent immobilization on P(SA) latex and loses its activity after adsorption onto P(S) latex, HRP-OX can be adsorbed onto P(S) latex and is readily immobilized covalently onto the ethylenediamine modified P(SA) and P(A) latexes, retaining much of its former enzymatic reactivity.This work was supported by the KBN Grant 2 0624 91 01  相似文献   

14.
Biomorphic calcium phosphate (CaP) microspheres with hierarchical porous structure were synthesized using natural cole pollen grains as templates and were further employed for the immobilization of horseradish peroxidase (HRP). Scanning electron microscopy and Fourier transform infrared spectroscopy revealed (a) the porous structure of the CaP microspheres, (b) the effective immobilization, and (c) the retention of the conformation of HRP on CaP. The immobilized HRP was placed on a glassy carbon electrode where it underwent a direct, fully reversible, and surface-controlled redox reaction with an electron transfer rate constant of 1.96 s?1. It also exhibits high sensitivity to the reduction of H2O2. The response to H2O2 is linear in the 5.00 nM to 1.27 μM concentration range, and the sensitivity is 30357 μA?mM?1?cm?2. The detection limit (at an SNR of 3) is as low as 1.30 nM. The apparent Michaelis–Menten constant (K M app ) of the immobilized enzyme is 0.92 μM. This new CaP with hierarchical porous structure therefore represents a material that can significantly promote the direct electron transfer between HRP and an electrode, and is quite attractive with respect to the construction of biosensors.
Figure
Biomorphic calcium phosphate microspheres with hierarchical porous has been synthesized using natural cole pollen grains as templates and were further employed for the immobilization of horseradish peroxidase to construct biosensors with high sensitivity and selectivity.  相似文献   

15.
In this paper, the mixture of Co3O4–graphene nanocomposite and horseradish peroxidase (HRP) was spread on the surface of carbon ionic liquid electrode (CILE). Then, Nafion film was used for the immobilization. The results of spectroscopy proved that HRP kept up its native structure in the complex material. Direct electrochemistry of HRP resulted in a couple of quasi-reversible redox waves on cyclic voltammograms, reflecting the realization of direct electron transfer of HRP with electrode. The improvement in electrochemical responses was due to the usage of highly conductive Co3O4–graphene nanocomposite with biocompatible interface. Electrochemical parameters such as the electron transfer coefficient (α) was estimated as 0.47, and the apparent heterogeneous electron transfer rate constant (k s) was calculated as 2.90 s?1. The HRP modified electrode exhibited good electrochemical catalytic ability toward the reduction of trichloroacetic acid and NaNO2. As a consequence, an updated third-generation electrochemical HRP biosensor with Co3O4–GR/CILE was constructed successfully.  相似文献   

16.
A monomeric copper(II) complex, [Cu(tpq)2(H2O)2](ClO4)2, (tpq = tripyridoquinoxaline), has been synthesized and characterized spectroscopically. This complex has been found to bind DNA intercalatively and the DNA binding constant, Kb, for this complex has been determined from absorption measurements and was found to be (5.7 ± 0.3) × 103 M−1. This complex successfully promotes hydrolytic cleavage of plasmid DNA, producing single and double DNA strand breaks in the absence of any added cofactor. The amount of conversion of the supercoiled form of plasmid to the nicked circular form depends on the concentration of the copper complex as well as the duration of the incubation of the complex with DNA. The rate of conversion of SC to NC has been determined to be 2.65 × 10−4 s−1 at pH 7.2 in the presence of 80 μM of the complex. This complex has also been shown to be cytotoxic towards A549 lung adenocarcinoma cells. This complex has been shown to bring about apoptosis of the cancerous A549 cell line.  相似文献   

17.
基于纳米金和硫堇固定酶的过氧化氢生物传感器   总被引:7,自引:0,他引:7  
在铂电极上自组装一层纳米金(GNs), 构建负电荷的界面, 然后通过金-硫、金-氮共价键合作用和静电吸附作用自组装一层阳离子电子媒介体硫堇(Thio). 再以同样的作用自组装一层GNs和辣根过氧化酶(HRP)的混合物, 最后在电极最外层滴加一层疏水性聚合物壳聚糖(Chit), 由此制备了一种新型的过氧化氢生物传感器. 研究了工作电位、检测底液pH、温度对响应电流的影响, 以及GNs和HRP之间的相互作用, 探讨了传感器的表面形态、交流阻抗、重现性和稳定性. 该传感器的酶催化反应活化能为12.4 kJ/mol, 表观米氏常数为6.5×10-4 mo/L, 在优化的实验条件下, 所研制的传感器对H2O2的线性范围为5.6×10-5~2.6×10-3 mol/L, 检出限为1.5×10-5 mol/L. 应用此方法制备了HRP和葡萄糖氧化酶(GOD)双酶体系葡萄糖生物传感器, 并应用于实验样品葡萄糖含量的测定.  相似文献   

18.
The electrochemical behavior of cytochrome c (cyt‐c) that was electrostatically immobilized onto a self‐assembled monolayer (SAM) of captopril (capt) on a gold electrode has been investigated. Cyclic voltammetry, scanning electrochemical microscopy (SECM) and electrochemical impedance spectroscopy were employed to evaluate the blocking property of the capt SAM. SECM was used to measure the bimolecular electron transfer (ET) kinetics (kBI) between a solution‐based redox probe and the immobilized protein. In addition, the tunneling ET between the immobilized protein and the underlying gold electrode was calculated. A kBI value of (5.0±0.6)×108 mol?1 cm3 s?1 for the bimolecular ET and a standard tunneling rate constant (k0) of 46.4±0.2 s?1 for the tunneling ET have been obtained.  相似文献   

19.
In this work, an enzyme biosensor based on the immobilization of horseradish peroxidase (HRP) on SiO2/BSA/Au/thionine/nafion-modified gold electrode was fabricated successfully. Firstly, nafion was dropped on the surface of the gold electrode to form a nafion film followed by chemisorption of thionine (Thi) as an electron mediator via the ion-exchange interaction between the Thi and nafion. Subsequently, the SiO2/BSA/Au composite nanoparticles were assembled onto Thi film through the covalent bounding with the amino groups of Thi. Finally, HRP was immobilized on the SiO2/BSA/Au composite nanoparticles due to the covalent conjugation to construct an enzyme biosensor. The surface topographies of the SiO2/BSA/Au composite nanoparticles were investigated by using scanning electronic microscopy. The stepwise self-assemble procedure of the biosensor was further characterized by means of cyclic voltammetry and chronoamperometry. The enzyme biosensor showed high sensitivity, good stability and selectivity, a wide linear response to hydrogen peroxide (H2O2) in the range of 8.0 × 10-6 ∼ 3.72 × 10-3 mol/L, with a detection limit of 2.0 × 10-6 mol/L. The Michaelies-Menten constant KMapp K_M^{app} value was estimated to be 2.3 mM.  相似文献   

20.
This study describes a simple and label-free electrochemical impedance spectroscopic (EIS) method for sequence-specific detection of DNA by using single-walled carbon nanotubes (SWNTs) as the support for probe DNA. SWNTs are confined onto gold electrodes with mixed self-assembly monolayers of thioethanol and cysteamine. Single-stranded DNA (ssDNA) probe is anchored onto the SWNT support through covalent binding between carboxyl groups at the nanotubes and amino groups at 5′ ends of ssDNA. Hybridization of target DNA with the anchored probe DNA greatly increases the interfacial electron-transfer resistance (Ret) at the double-stranded DNA (dsDNA)-modified electrodes for the redox couple of Fe(CN)63−/4−, which could be used for label-free and sequence-specific DNA detection. EIS results demonstrate that the utilization of SWNTs as the support for probe DNA substantially increases the surface loading of probe DNA onto electrode surface and thus remarkably lowers the detection limit for target DNA. Under the conditions employed here, Ret is linear with the concentration of target DNA within a concentration range from 1 to 10 pM with a detection limit down to 0.8 pM (S/N = 3). This study may offer a novel and label-free electrochemical approach to sensitive sequence-specific DNA detection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号