首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Identifying and measuring the ammonia gas that emanates from human skin, which we called skin gas, has been achieved using a modified gas chromatographic system with a nitrogen-selective detector (flame-thermoionic detector: FTD). The skin gas is collected with a home-made sampling probe or bag, which is used to cover the skin surface of a subject's wrist, or a finger, for 5 min. It was proved that ammonia was present in skin gas for healthy persons and patients with hepatic disease. The average amounts of ammonia were 1.7 +/- 0.4 and 2.7 +/- 0.8 ng/cm2; furthermore, there was a significant difference between them (p < 0.05). In addition, the ammonia levels present in skin gas were correlated with that in blood (r = 0.64, p < 0.05).  相似文献   

2.
Lärstad M  Loh C  Ljungkvist G  Olin AC  Torén K 《The Analyst》2002,127(11):1440-1445
A method for the determination of exhaled ethane, pentane and isoprene was developed and validated. The method was based on pre-concentration of the analytes on a multi-bed solid adsorbent tube containing Tenax TA, Carboxen 569 and Carboxen 1000, thermal desorption and gas chromatography (GC) with flame ionisation detection (FID). A pre-column in an end-cut GC system was used to avoid problems with water and strongly retained substances. The detection limits were 5, 2 and 6 pmol per sample for ethane, pentane and isoprene, respectively, using a sample volume of 500 ml. The linearity was good for all analytes with correlation coefficients exceeding 0.999. The repeatability for exhaled air samples was 7, 10 and 12% for ethane, pentane and isoprene, respectively. Analysis of a certified reference material of ethane and pentane did not differ significantly from the certified values. Ethane and pentane levels were stable up to six days of storage in sample tubes. Isoprene levels were not stable during storage in the sample tubes used here, but using Carbopack X instead of Carboxen 569, levels were stable up to two days. The levels of exhaled ethane, pentane and isoprene in healthy subjects (n = 4) were 8.1+/-5.8 pmol l(-1), 11+/-5.8 pmol l(-1) and 2.4+/-0.90 mnol l(-1), respectively. The method could, with minor modifications, be used to determine other low-molecular hydrocarbons in exhaled air as well.  相似文献   

3.
建立了GC-MS/FID测定环境空气中57种臭氧前体物的分析方法.优化三级冷阱捕集温度、三级冷阱解析温度、初始柱温、毛细管色谱柱等实验条件.优化条件为:采用硅烷化的苏玛罐采集环境空气,目标组分经三级冷阱在-180℃低温浓缩富集,80℃解析,初始柱温为15℃,结合中心切割技术,将乙烷、乙烯、乙炔、丙烷、丙烯切割至TG-B...  相似文献   

4.
Analysis of dissolved methane, ethylene, acetylene, and ethane in water is crucial in evaluating anaerobic activity and investigating the sources of hydrocarbon contamination in aquatic environments. A rapid chromatographic method based on phase equilibrium between water and its headspace is developed for these analytes. The new method requires minimal sample preparation and no special apparatus except those associated with gas chromatography. Instead of Henry's Law used in similar previous studies, partition coefficients are used for the first time to calculate concentrations of dissolved hydrocarbon gases, which considerably simplifies the calculation involved. Partition coefficients are determined to be 128, 27.9, 1.28, and 96.3 at 30°C for methane, ethylene, acetylene, and ethane, respectively. It was discovered that the volume ratio of gas-to-liquid phase is critical to the accuracy of the measurements. The method performance can be readily improved by reducing the volume ratio of the two phases. Method validation shows less than 6% variation in accuracy and precision except at low levels of methane where interferences occur in ambient air. Method detection limits are determined to be in the low ng/L range for all analytes. The performance of the method is further tested using environmental samples collected from various sites in Nova Scotia.  相似文献   

5.
Pure gas permeation and sorption experiments were carried out for the gases ethylene, ethane, propylene and propane using polyimides based on 4,4′-(hexafluoroisopropylidene) diphthalic anhydride (6FDA). Composite membranes and free films were used. Experiments were performed at 308 K and feed pressures up to 17 atm for ethylene and ethane and 9 atm for propylene and propane. Mixed gas permeation experiments were carried out with 50 : 50 olefin/paraffin feed mixtures. For all investigated polyimides, the ideal ethylene/ethane separation factor ranged between 3.3 and 4.4 and the ideal propylene/propane separation factor ranged between 10 and 16 at a feed pressure of 3.8 atm and 308 K. In mixed gas permeation experiments, up to 20% lower selectivity was found for the ethylene/ethane separation and up to 50% reduced selectivity for the propylene/propane separation compared to the ideal selectivity. The influence of feed temperature on separation and permeation properties will be discussed based on pure gas permeability data at 298 and 308 K.  相似文献   

6.
Pure and binary adsorption equilibrium data of ethylene and ethane on zeolite 5A were collected with a volumetric method for the temperature range 283 K to 323 K and pressure up to 950 kPa. The applicability of the binary adsorption prediction by the vacancy solution theory (VST) was investigated. Further individual adsorption and selectivity were obtained by VST prediction. According to the experimental results, zeolite 5A has a high adsorption capacity and selectivity for ethylene in the ethylene/ethane system. VST predicts that ethylene selectivity increases with pressure; it also shows that the amount of ethylene separated by zeolite 5A increases as the temperature decreases at a specified pressure.  相似文献   

7.
The solid-phase microextraction (SPME) device was used as a time-weighted average (TWA) sampler for ethylene oxide. Carboxen/polydimethylsiloxane (CAR/PDMS) fiber was used and hydrogen bromide (HBr) was loaded onto the fiber. The SPME fiber assembly was then inserted into PTFE tubing to improve the wearer's acceptance as a diffusive sampler. Known concentrations of ethylene oxide around the threshold limit values (TLVs)/time-weighted average and specific relative humidities (RHs) were generated by syringe pumps in a dynamic generation system. Ethylene oxide in gas bags were also generated. An exposure chamber was designed to allow measurement of face velocities, temperatures, exposing vapor concentrations, and RHs. Gas chromatography-mass spectrometry (GC-MS) was used for sample analysis. The appropriate adsorption time for SPME coating HBr was found to be 30 s and the desorption time for 2-bromothanol formed after sampling was determined to be 5 min. The experimental sampling constant of the sampler was found to be (2.96 +/- 0.09) x 10(-2) cm3/min, while face velocity (0-0.25 m/s) as well as RHs (10-80%) were not expected to have effects on the sampler.  相似文献   

8.
采用活性氧化铝柱-气相色谱法对作业场所空气中乙烯、丙烯、丁烯、丁二烯进行活性炭采样,热解吸后进样分析。活性炭管对"四烯"的吸附性良好,测定结果的相对标准偏差为0.37%~2.08%;乙烯、丙烯、丁烯、丁二烯检出限分别为0.0010、0.000520、.00083、0.0003 mg/L;样品的平均解吸效率为93.7%~98.59%;样品的平均采样效率为93.9%~99.1%;乙烯、丙烯、丁烯、丁二烯穿透容量分别为9.58、.87、.4、7.1 mg;样品在室温下放置7 d,其平均样品损失率不大于5.58%,在4~10℃环境放置10 d,其平均样品损失率不大于7.11%,空气中乙烷对本方法无干扰。该法可满足职业卫生检测的要求。  相似文献   

9.
Time-resolved FT-IR spectra of ethylene hydrogenation over alumina-supported Pt catalyst were recorded at 25 ms resolution in the temperature range of 323-473 K using various H2 concentrations (1 atm total gas pressure). Surface ethyl species (2870 and 1200 cm(-1)) were detected at all temperatures along with the gas-phase ethane product (2954 and 2893 cm(-1)). The CH3CH2Pt growth was instantaneous on the time scale of 25 ms under all experimental conditions. At 323 K, the decay time of surface ethyl (122 +/- 10 ms) coincides with the rise time of ethane (144 +/- 14 ms). This establishes direct kinetic evidence for surface ethyl as the relevant reaction intermediate. Such a direct link between the temporal behavior of an unstable surface intermediate and the final product in a heterogeneous catalytic system has not been demonstrated before. A fraction (25%) of the asymptotic ethane growth at 323 K is prompt, indicating that there are surface ethyl species that react much faster than the majority of the CH3CH2Pt intermediates. The dispersive kinetics is attributed to the varying strength of interaction of the ethyl species with the Pt surface caused by heterogeneity of the surface environment. At 473 K, the majority of ethyl intermediates are hydrogenated prior to the recording of the first time slice (24 ms), and a correspondingly large prompt growth of ethane is observed. The yield and kinetics of the surface ethylidyne are in agreement with the known spectator nature of this species.  相似文献   

10.
裂解气中NO,AsH_3,COS等杂质的色/质联用测定研究   总被引:2,自引:0,他引:2  
郑永杰  李英杰  张维冰  吕自立 《色谱》2001,19(4):338-340
 以气相色谱 /质谱 (GC/MS)的选择离子监测 (SIM )测定方式对裂解气中的一氧化氮、砷化氢、羰基硫、硫醚、硫醇等杂质进行了测定。针对一氧化碳、二氧化碳、乙烷、乙烯及氮气对一氧化氮测定的干扰 ,分别采取色谱分离和扣除响应的方法对其予以排除。考察了裂解工艺气物流对所选择离子的测定的干扰情况。对实际工艺气中的上述杂质进行了测定 ,结果一氧化氮的检出限为 10 0nL/L。  相似文献   

11.
Methane, the major constituent of natural gas, had been converted to higher hydrocarbons by a microwave plasma. The yield of C2+ products increased from 29.2% to 42.2% with increasing the plasma power and decreasing the flow rate of methane. When the catalysts were used in the plasma reactor, the selectivities of ethylene and acetylene increased while the yield of C2+ remained constant. Among the various catalysts used, the Fe catalyst showed the highest ethylene selectivity of 30%. When we introduced the actual natural gas, more C2+ products were obtained (46%). This is due to the ethane and propane in the natural gas. When an electric field inductance for evolving the high plasma was applied, a high yield in C2+ products of 63.7% was obtained for the Pd-Ni bimetal catalyst.  相似文献   

12.
Poly[oxy[[2-(perfluorooctyl)ethyl]thiomethyl]ethylene]s (H2F8TP-Xs, where X is mole% of perfluorooctyl groups in the side chain) with different levels of conversion were synthesized using polymer analogous reactions from poly[oxy(chloromethyl)ethylene] and 2-perfluorooctyl ethane thioacetate. H2F8TP-20, 41, 64, and 85 were obtained by changing the poly[oxy(chloromethyl)ethylene] to 2-perfluorooctyl ethane thioacetate mole ratio in the reaction from 0.35 to 1.50. H2F8TP-85 (85% conversion) was found to have an extremely low surface energy of 6.2 mN/m at room temperature, which was attributed to the highly ordered perfluorinated alkyl groups on the surface as a result of phase separation between the perfluorinated side chain part and the hydrogenated flexible backbone. The films of the polymers were characterized by electron spectroscopy for chemical analysis (ESCA) and near edge X-ray absorption fine structure (NEXAFS).  相似文献   

13.
A Ni-La/SiO2 catalyst was prepared through the incipient wetness impregnation method and tested in the oxidative dehydrogenation of ethane (ODHE) with CO2. The fresh and used catalysts were characterized by XRD and SEM techniques. The Ni-La/SiO2 catalyst exhibited catalytic activity for the oxidative dehydrogenation of ethane, but with low ethylene selectivity in the absence of methane. The selectivity to ethylene increased with increasing molar ratio of methane in the feed. The carbon deposited on the catalyst surface in the sole ODHE with CO2 was mainly inert carbon, while much more filamentous carbon was formed in the presence of methane. The filamentous carbon was easy to be removed by CO2, which might play a role in improving the conversion of ethane to ethylene. The introduction of methane might affect the equilibrium of the CO2 reforming of ethane and the ODHE with CO2. As a consequence, the synthesis gas produced from CO2 reforming of methane partly inhibited the reaction of ethane and promoted the ODHE with CO2, thus increasing the selectivity of ethylene.  相似文献   

14.
The thermal gas-phase pyrolysis of ethane was studied under conditions of the bulk heating of the reaction mixture with IR-laser radiation. The concentrations of ethane pyrolysis products as functions of reaction time were calculated in accordance with standard kinetic schemes; they showed that a classical radical chain mechanism corresponded to only highly dilute mixtures of ethane with an inert gas. As found by calculations, the experimental data on the kinetics of consumption of the initial substance and on the kinetics of buildup of pyrolysis products in undiluted mixtures of ethane and its conversion products were adequately described by an autocatalytic (with respect to ethylene) mechanism of ethane dehydrogenation. This mechanism involved the step of ethane interaction with ethylene to form methyl and propyl radicals.  相似文献   

15.
The importance of natural gas as an international trading commodity and the cost to consumers has made the accuracy of determinations for the components of natural gas very important. Pricing of natural gas is based on the heating value of the gas determined from either calorimetry measurements or calculations based on individual component concentrations determined by gas chromatography (GC). Due to the expense of accurate calibration standards, many analysts and laboratories will use a single calibration standard to perform natural gas determinations. Therefore, the purpose of this study was to determine whether an analyst could accurately measure the components of natural gas, in particular methane, using a single standard, or whether a suite of standards is necessary to calibrate the analytical instrument. A suite of eight gravimetric primary standards was prepared covering a concentration range for methane of 64-94 mol%, with uncertainties of +/-0.05% relative (95% confidence interval). These natural gas primary standards also contained nitrogen, carbon dioxide, ethane, propane, iso-butane, n-butane, iso-pentane, n-pentane, and n-hexane with varying concentrations from 0.02 to 14%. A single analytical method was used in which only the amount of sample injected onto the column was altered. The results show that when injecting a 0.5 ml sample volume a second-order regression through the standards is necessary for the determination of methane. The results for nitrogen, ethane and propane also show the same trend. Only those individual standards whose methane concentration is within 1% of the test mixture predicted a concentration within 0.05% of the regression value. Those individual primary standards whose methane concentration is different by more than +/-1% of the test mixture predicted values differing by +/-0.5 to +/-2.0% from the regression value. These differences lie well outside the predicted concentration uncertainty interval of +/-0.20%. A smaller sample volume, 0.1 ml, resulted in a set of data that could be fit using linear regression. Each of the eight primary standards individually predicted the methane in the test mixture to be within +/-0.11% of the predicted value from linear regression. The data confirm that it is imperative to fully characterize the analytical system before proceeding with an analysis.  相似文献   

16.
Experimental solubility and sorptive dilation data are reported for carbon dioxide and ethane in a crosslinked poly(ethylene oxide) (XLPEO) rubbery copolymer. Five different temperatures (253 ≤ T(K) ≤ 308) were considered, with a maximum gas pressure of 2.09 MPa (20.6 atm). The polymer was prepared by photopolymerization of a solution containing 70 wt % poly(ethylene glycol) methyl ether acrylate (PEGMEA) and 30 wt % poly(ethylene glycol) diacrylate (PEGDA). Sorption isotherms were described by the Flory‐Huggins model. For each gas, the Flory‐Huggins interaction parameter was a decreasing function of temperature and did not show a composition dependence. Dilation and sorption data were combined to calculate the partial molar volume (PMV) of the gases in the polymer, which was an increasing function of temperature. Based on a comparison with literature data for a XLPEO homopolymer prepared from pure PEGDA over the same range of operating conditions, an effect of the network composition on both gas solubility and PMV was found. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 456–468, 2010  相似文献   

17.
The transport of olefin and paraffin namely ethane, ethylene, propane and propylene in aromatic poly(1,5-naphthalene-2,2′-bis(3,4-phthalic) hexafluoropropane) diimide (6FDA-1,5-NDA) dense membranes was investigated. The gas permeability coefficients were measured at pressures from 2.5 to 16 atm for the C2 hydrocarbon gases and pressures up to 8.4 atm for C3 systems at 35 °C. This membrane exhibits permeabilities of 0.15, 0.87, 0.023 and 0.24 Barrer with respect to pure ethane, ethylene, propane and propylene, and shows an ideal selectivity of 5.8 for the separation of ethylene/ethane, 10 for propylene/propane, 7.6 for nitrogen/ethane and 50 for nitrogen/propane. The olefins showed a preferred permeability to paraffins and discussion were drawn to the permeability, diffusivity and solubility coefficients. The activation energies of permeation, diffusion and solution were also reported and the effect of temperature on the permeation properties was discussed for the pure gas permeability data obtained from 30 to 50 °C. The plasticisation effect was also found for propane and propylene, respectively, although it was neither detected in the saturated nor unsaturated C2 hydrocarbons at pressures up to 16 atm.  相似文献   

18.
Ethylene/ethane sorption characteristics were determined for dry Pebax™ (poly(amide 12-block-tetramethylenoxide) copolymer)/AgBF4 membranes by using an electronic microbalance. The membranes containing 0.7 and 22 wt.% AgBF4 showed a dual-mode sorption isotherm. The ethane isotherms for all the membranes were of the Henry-type, which is the normal sorption for gases in rubbery polymers. The abnormal presence of Langmuir sorption sites only for ethylene in the rubbery copolymer, never reported sofar, is attributed to the silver-based specific complexation sites. The silver salt which dissolved in limited amounts in the rubbery copolymer had a much smaller Langmuir sorption capacity than the salt that crystallized in the copolymer. The sorption kinetics indicate that the crystallized salt did adsorb slowly ethylene according to a zeroth-order kinetics, but not ethane. The gas uptake kinetics resulting from a step of the pressure surrounding the copolymer exhibited one stage for ethane but two stages for ethylene. For the latter, there was first a fast Fickian sorption stage, then a drift of the zeroth-order sorption of ethylene on salt crystals, which contributes for a large part to the total uptake. The zeroth-order sorption suggests that the sorbed ethylene amount in the second-stage is independent of the crystal-surface coverage. The value of the Fickian diffusion coefficient calculated by fitting the kinetics with a solution of the second Fick’s law was 5 × 10−12 m2/s for both ethylene (the first stage) and ethane, and is typical for small organic compounds in a rubbery material.  相似文献   

19.
The reactions of ground-state imidogen radicals (NH(X 3sigma-)) with NO and select saturated and unsaturated hydrocarbons have been measured in a pulsed supersonic expansion Laval nozzle flow reactor in the temperature range 53-188 K. The rate coefficients for the NH + NO system display negative temperature dependence in the temperature regime currently investigated and a global temperature-dependent fit is best represented in a modified power law functional form, with k1(NH + NO) = (4.11 +/- 0.31) x 10(-11) x (T/300)(-0.30+/-0.17) x exp(77+/-21/T) cm3/s. The reactions of NH with ethylene, acetylene, propene, and diacetylene were measured over the temperature range 53-135 K. In addition, the reactions of NH with methane and ethane were also measured at 53 K, for reasons discussed later. The temperature dependence of the reactions of NH with the unsaturated hydrocarbons are fit using power law expressions, k(T) = A(T/300)(-n), and are as follows: k4 = (2.3 +/- 1.2) x 10(-12) x (T/300)(-1.09+/-0.33) cm3/s, k5 = (4.5 +/- 0.3) x 10(-12) x (T/300)(-1.07+/-0.04) cm3/s, k6 = (5.6 +/- 1.9) x 10(-12) x (T/300)(-1.23+/-0.21) cm3/s, and k7 = (7.4 +/- 1.8) x 10(-12) x (T/300)(-1.23+/-0.15) cm3/s for ethylene, acetylene, propene, and diacetylene, respectively. The rate for NH + ethane at 53 K is measured to be k3 = (6.8 +/- 1.7) x 10(-12) cm3/s, while that for methane at the same temperature represents an upper bound of k2 < or = (1.1 +/- 4.3) x 10(-12) cm3/s, as this is at the limits of measurement with our current technique. The behavior of these systems throughout the temperature range explored indicates that these reactions occur over a potential energy surface without an appreciable barrier through a complex formation mechanism. Implications for chemistry in low temperature environments where these species are found are briefly discussed.  相似文献   

20.
The recent shale gas boom combined with the requirement to reduce atmospheric CO2 have created an opportunity for using both raw materials (shale gas and CO2) in a single process. Shale gas is primarily made up of methane, but ethane comprises about 10 % and reserves are underutilized. Two routes have been investigated by combining ethane decomposition with CO2 reduction to produce products of higher value. The first reaction is ethane dry reforming which produces synthesis gas (CO+H2). The second route is oxidative dehydrogenation which produces ethylene using CO2 as a soft oxidant. The results of this study indicate that the Pt/CeO2 catalyst shows promise for the production of synthesis gas, while Mo2C‐based materials preserve the C? C bond of ethane to produce ethylene. These findings are supported by density functional theory (DFT) calculations and X‐ray absorption near‐edge spectroscopy (XANES) characterization of the catalysts under in situ reaction conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号