首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new improvement based on outlet fractionation and feedback has been developed for simulated moving bed (SMB) chromatography. In this contribution, this fractionation and feedback SMB (FF-SMB) concept is extended to the general scenario which integrates a simultaneous fractionation of both outlet streams. A model-based optimization approach, previously adopted to investigate single fractionation, is extended to consider this flexible fractionation policy. Quantitative optimization studies based on a specific separation problem reveal that the double fractionation is the most efficient operating scheme in terms of maximum feed throughput, while the two existing single fractionation modes discussed in our previous study are also significantly superior to the conventional SMB operation. The advantages of the double fractionation extension are further demonstrated in terms of several more detailed performance criteria. In order to evaluate the applicability of the fractionation and feedback modification, the effect of product purity, adsorption selectivity, column efficiency and column number on the relative potential of FF-SMB over SMB is examined.  相似文献   

2.
Simulated moving bed (SMB) chromatography is an important technique for the continuous separation of valuable products. Recently suggested process modifications have shown the potential for further improvement. In this work, a concept is presented that combines non-permanent product withdrawal at one or both outlet ports (leading periodically to a "product" and a "non-product" fraction) with an internal recycle and re-feeding of the "non-product" fraction in alternation to the original feed mixture. Using simulation studies for linear and non-linear isotherms, it was shown that in terms of process performance and product recovery, this fractionation and feed-back approach (FF-SMB) is superior to both the conventional SMB process as well as to a previously reported fractionation and discard strategy.  相似文献   

3.
A new optimization based adaptive control strategy for simulated moving beds (SMBs) is proposed. A linearized reduced order model, which accounts for the periodic nature of the SMB process, is used for online optimization and control. The manipulated variables are the four inlet flow rates, the outputs are the raffinate and extract concentrations. Concentration measurements at the raffinate and extract outlets are used as the feedback information. The state estimate from the periodic Kalman filter is used for the prediction of the outlet concentrations over a chosen horizon. Predicted outlet concentrations are the basis for the calculation of the optimal input adjustments, which maximize the productivity and minimize the desorbent consumption subject to constraints on product purities. The realization of this concept is discussed and the implementation on a virtual eight column SMB platform is assessed, in the case of binary linear systems. For a whole series of typical plant disturbances it is shown that the proposed approach is effective in minimizing off-spec products and in achieving optimal SMB operation, also in the case where there are significant model uncertainties.  相似文献   

4.
Kim K  Kim JI  Park H  Koo YM  Lee KS 《Journal of chromatography. A》2011,1218(38):6843-6847
A bi-level optimizing control scheme originally proposed for a simulated moving bed (SMB) with linear isotherms has been extended to an SMB with nonlinear isotherms. Cyclic steady state optimization is performed in the upper level to determine the optimum switching period and time-varying feed/desorbent flow rates, and repetitive model predictive control is run in the lower level for purity regulation, taking the decision variables from the upper level as feed-forward information. Experimental as well as numerical study for an SMB process separating a high-concentration mixture of aqueous L-ribose and L-arabinose solutions showed that the proposed scheme performs satisfactorily against various disturbances. In contrast, an alternative scheme based on an SMB model with linear isotherms showed a limitation in the control performance; this scheme was apt to fail in purity regulation.  相似文献   

5.
A new continuous chromatographic process (Varicol) has been presented recently. Its basic principle consists, in contrast to the traditional simulated moving bed (SMB) technology, of an asynchronous shift of the inlet/outlet lines in a multi-column system with a recycle loop. Due to the stronger influence of the discrete dynamics on the plant behavior, the design of a Varicol process requires the use of model-based optimization to take advantage of the very high flexibility of this process. The equilibrium theory which has been successfully applied to SMB by many practitioners fails to predict the region of complete separation accurately. In this paper, we present a rigorous model-based optimization framework, which can handle the SMB and the novel Varicol process in a systematic manner. The feasibility of the approach is demonstrated by the separation of a mixture of propranolol isomers which exhibits a highly non-linear multi-component adsorption behavior. Experimental results are presented and discussed.  相似文献   

6.
The separation of dilute binary mixtures of proteins by salt aided ion-exchange simulated moving bed (SMB) chromatography is optimized with respect to throughput, desorbent consumption and salt consumption. The optimal flow-rate ratios are analytically determined via an adopted "triangle theory". Azeotropic phenomena are included in this procedure. The salt concentrations in the feed and recycled liquid are subsequently determined by numerical optimization. The azeotropic separation of bovine serum albumin and a yeast protein is used to illustrate the procedure. Gradient operation of the SMB is generally preferred over isocratic operation. A feed of azeotropic salt concentration can only be separated in a gradient SMB. Desorbent and salt consumption are always lower in gradient than in isocratic SMB chromatography.  相似文献   

7.
We report on a numerical and experimental study of two-column versions of streamlined, multicolumn, semi-continuous chromatography for binary separation. The systems combine a flexible node design, cyclic flow-rate modulation, and relayed operation of the inlet/outlet ports to extend the mass-transfer zone over the largest possible length, while keeping it inside the system at all times. One advantage of these streamlined designs is the simplicity of their physical realization: regardless of the number of columns, they only require two pumps to supply feed and desorbent into the system, while the flow rates of liquid withdrawn from the system are controlled by material balance using simple two-way valves. In one case, an extra pump is needed to recirculate the fluid in closed-loop. A rigorous model-based optimization approach is employed in the optimal design of the cycles to generate solutions that are physically realizable in the experimental set-ups. The optimized schemes for two-column operation supply fresh feed into the middle of the system where the composition of the circulating fluid is closest to that of the feedstock fluid, and recover the purified products, extract and raffinate, alternately at the downstream end of the unit, while desorbent is continuously supplied into the upstream end of the system. By internally recycling part of the non-pure cut fraction, the scheme with a step of closed-loop recycling significantly reduces its solvent consumption. The feasibility and effectiveness of the reported two-column processes have been verified experimentally on the linear separation of nucleosides by reversed phase subject to 99% purity constraints on both products. It is shown that our processes compare favorably against single-column batch chromatography, steady-state recycling, and four-column, open-loop SMB, for the same amount of adsorbent; they are also better than the four-column, closed-loop SMB at high feed throughputs.  相似文献   

8.
Salt gradients can improve the efficiency during fractionation of proteins by ion-exchange in simulated moving beds (SMBs). The gradients are formed using feed and desorbent solutions of different salt concentrations. The thus introduced regions of high and low affinity may reduce eluent consumption and resin inventory compared to isocratic SMB systems. This paper describes a procedure for the selection of the flow-rate ratios that enables successful fractionation of a dilute binary mixture of proteins in a salt gradient. The procedure is based on the so-called "triangle theory" and can be used both for upward gradients (where salt is predominantly transported by the liquid) and downward gradients (where salt is predominantly transported by the sorbent). The procedure is verified by experiments.  相似文献   

9.
This paper presents an analysis of a hybrid process consisting of simulated moving bed (SMB) chromatography and crystallization and studies its performance for the separation of the Tr?ger's base enantiomers. The SMB is simulated using a detailed model including column efficiency, thus, implying a proper evaluation of the effect of column size on column efficiency and separation performance. The crystallization operations are accounted for through material balances, assuming equilibrium between enantiopure crystals and mother liquor. A genetic algorithm is used to optimize the combined process, using proper definitions of objective functions. Multi-objective optimization of this hybrid process for productivity and evaporation cost in terms of operating parameters, column length, and SMB feed concentration shows an optimum SMB purity value as a trade off between increased SMB performance and recycle of the mother liquor.  相似文献   

10.
One of the modified simulated moving bed (SMB) processes, the intermittent SMB (I-SMB) process, has been recently analyzed theoretically [1] and its superior performance compared to the conventional SMB process has been demonstrated at a rather low total feed concentration through experiments and simulations [2]. This work shows that the I-SMB process outperforms the conventional SMB process also at high feed concentration where the species are clearly subject to a nonlinear adsorption isotherm. In the case of the separation of the Tröger's base's enantiomers in ethanol on ChiralPak AD, the two processes operated in a six-column 1-2-2-1 configuration (one column in sections 1 and 4 and two columns in sections 2 and 3) and in a four-column 1-1-1-1 configuration (one column in each section) are compared at high feed concentration through both experiments and simulations. Even under nonlinear conditions the four column I-SMB process can successfully separate the two enantiomers achieving purity levels as high as the two six column processes and exhibiting better productivity.  相似文献   

11.
Simulated moving bed (SMB) chromatography, a continuous multi-column chromatographic process, has become one of the preferred techniques for the separation of the enantiomers of a chiral compound. Several active pharmaceutical ingredients, including blockbuster drugs, are manufactured using the SMB technology. Compared to single column preparative chromatography, SMB separations achieve higher productivity and purity, while reducing the solvent consumption. The SMB technology has found applications both at small and large scales. Design methods have been developed for robust operation and scale-up, using data obtained from analytical experiments. In the last few years, rapid developments have been made in the areas of design, improved process schemes, optimization and robust control. This review addresses these developments, as well as both the fundamentals of the SMB science and technology and some practical issues concerning the operation of SMB units. Particular emphasis is placed on the consolidation of the “triangle theory”, a design tool that is used both in the academia and industry for the design of SMB processes.  相似文献   

12.
Configurations of a four-column simulated moving bed chromatographic process are investigated by multi-objective optimization. Various existing column configurations are compared through a multi-objective optimization problem. Furthermore, an approach based on an SMB superstructure is applied to find novel configurations which have been found to outperform the standard SMB configuration. An efficient numerical optimization technique is applied to the mathematical model of the SMB process. It has been confirmed that although the optimal configuration highly depends on the purity requirement, the superstructure approach is able to find the most efficient configuration without exploring various existing configurations.  相似文献   

13.
Simulated Moving Bed (SMB) was developed as a realization of continuous countercurrent operation of chromatographic separation. An SMB unit consists of several columns of the same length connected in series, where feed and desorbent are supplied and extract and raffinate are withdrawn continuously. This operation is repeated by shifting the supply/withdrawal points at a regular interval, making the operation symmetric. In this study, we explore asymmetric operation and design through a full-cycle optimization model, where the operation of the entire cycle is described within a nonlinear programming (NLP) problem and the Partial Differential Algebraic Equations (PDAEs) are fully discretized both in temporal and spatial domains. The NLP problem is implemented within the AMPL modeling environment and is solved using IPOPT, an interior-point NLP solver. We found that this problem is solved efficiently, and introducing a full-cycle formulation has the potential to improve the performance of SMB, as shown through single and multi-objective optimization studies.  相似文献   

14.
In this paper we draw on two stochastic optimization techniques, Simulated Annealing and Genetic Algorithm (SAGA), to create a hybrid to determine the optimal design of nonlinear Simulated Moving Bed (SMB) systems. A mathematical programming model based on the Standing Wave Design (SWD) offers a significant advantage in optimizing SMB systems. SAGA builds upon the strength of SA and GA to optimize the 16 variables of the mixed-integer nonlinear programming model for single- and multi-objective optimizations. The SAGA procedure is shown to be robust with computational time in minutes for single-objective optimization and in a few hours for a multi-objective optimization, which is comprised of more than one hundred points.  相似文献   

15.
The improvement of the simulated moving bed (SMB) process based on the introduction of a cyclic modulation of the feed concentration is described. It is demonstrated that such a feed concentration gradient during the shifting cycle can improve the performance significantly. The productivity and the product concentrations can be increased while simultaneously the solvent consumption can be decreased compared to the conventional SMB process with constant feed parameters.  相似文献   

16.
In this contribution, simple methods are presented for controlling a simulated moving bed (SMB) chromatographic process with standard PI (proportional integral) controllers. The first method represents a simple and model-free inferential control scheme which was motivated from common distillation column control. The SMB unit is equipped with UV detectors. The UV signals in the four separation zones of the unit are fixed by four corresponding PI controllers calculating the ratio of liquid and solid flow in the respective separation zone. In order to be able to adjust the product purity a second, model-based control scheme is proposed. It makes use of the nonlinear wave propagation phenomena in the apparatus. The controlled chromatographic unit is automatically working with minimum solvent consumption and maximum feed throughput--without any numerical optimization calculations. This control algorithm can therefore also be applied for fast optimization of SMB processes.  相似文献   

17.
Experimental implementation of an optimizing controller based on identified model for the separation of nucleosides in a laboratory scale simulated moving bed (SMB) unit is reported in this study. The manipulative variables are the three external and one internal flow rates while the outputs are productivity, solvent consumption, and purities of extract and raffinate streams averaged over a switching period. The feedback information is the concentration profile of extract and raffinate measured online using two ultraviolet (UV) detectors. Experimental results show that the designed controller is able to operate the SMB units under optimal condition fulfilling the purity requirements. Besides, the controller demonstrated excellent performance in terms of rejecting disturbances that may occur during SMB operations.  相似文献   

18.
A possible way to improve the separation performance of simulated moving bed (SMB) units is to change the internal and external liquid flow-rates during the switching period. This operation mode, referred to as PowerFeed, is examined in this work through a model analysis. Similar to the Varicol process, which allows for the asynchronous movement of the ports, the PowerFeed process exhibits more degrees of freedom than the classical SMB process and therefore allows more room for optimization. Using an optimization technique based on a genetic algorithm, all three processes have been optimized for a few case studies in order to determine their relative potentials. It is found that PowerFeed and Varicol provide substantially equivalent performances, which are however significantly superior to those of the classical SMB process.  相似文献   

19.
The solvent composition was adjusted in a theoretical study in order to maximize the efficiency of a simulated moving bed (SMB) process. The isocratic realization of the process as well as the solvent gradient mode were considered. The solvent composition and the flow rates were used as decision variables in a random search optimization algorithm known to be a reliable tool for nonlinear programming problems. The results of the optimization indicate that the optimal composition of the mobile phase depends strongly on the feed concentration. The asymmetry of the internal concentration profiles, which has a negative effect on the separation efficiency, can be partly damped by an increase of the solvent strength. In the cases studied the optimal solvent strength determined for concentrated feed streams is higher than that for diluted ones. Moreover, the optimum is strongly influenced by the value of the selectivity factor and its dependency on the mobile phase composition. Different results were obtained for cases, in which the separation factor increases with increasing the modifier concentration, than for cases, in which the separation factor decreases with increasing the modifier concentration. A similar analysis was performed for a solvent gradient SMB process, in which different solvents are used at the two inlet ports: a weak solvent in the feed stream and a strong solvent in the desorbent stream. Again the optimal mobile phase composition was strongly affected by the type of the isotherms and their non-linearity. The potential of a gradient SMB process in terms of increasing the productivity and reducing the eluent consumption is exemplified.  相似文献   

20.
The resolution of racemic gas mixtures by simulated moving bed (SMB) and pressure swing adsorption (PSA) is investigated by dynamic simulation and optimization. Enantiomer separation of inhalation anesthetics is important because there is evidence that the purified enantiomers may have different pharmacological properties than the racemate. The model parameters reported in an experimental investigation performed elsewhere are used to study the feasibility of this separation using SMB and PSA configurations. Both processes were modeled in gPROMS® as systems of differential algebraic equations. Operating conditions are optimized such that the feed throughput and product recovery for each process were maximized subject to equal constraints on the pressures and superficial gas velocities. SMB was found to be capable of resolving racemic feed mixtures with purity and recovery exceeding 99%. On the other hand, PSA was also able to provide a single purified enantiomer with low recovery of about 30% which may limit its application to enantiomer separation. Nevertheless, PSA consumes less desorbent, and achieves higher throughput at the sacrifice of lower recovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号