首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 90 毫秒
1.
We have extended the Rice-Tracey model (J. Mech. Phys. Solids 17 (1969) 201) of void growth to account for the void size effect based on the Taylor dislocation model, and have found that small voids tend to grow slower than large voids. For a perfectly plastic solid, the void size effect comes into play through the ratio εl/R0, where l is the intrinsic material length on the order of microns, ε the remote effective strain, and R0 the void size. For micron-sized voids and small remote effective strain such that εl/R0?0.02, the void size influences the void growth rate only at high stress triaxialities. However, for sub-micron-sized voids and relatively large effective strain such that εl/R0>0.2, the void size has a significant effect on the void growth rate at all levels of stress triaxiality. We have also obtained the asymptotic solutions of void growth rate at high stress triaxialities accounting for the void size effect. For εl/R0>0.2, the void growth rate scales with the square of mean stress, rather than the exponential function in the Rice-Tracey model (1969). The void size effect in a power-law hardening solid has also been studied.  相似文献   

2.
Large strain finite element calculations of unit cells subjected to triaxial axisymmetric loadings are presented for plastically orthotropic materials containing a periodic distribution of aligned spheroidal voids. The spatial distribution of voids and the plastic flow properties of the matrix are assumed to respect transverse isotropy about the axis of symmetry of the imposed loading so that a two-dimensional axisymmetric analysis is adequate. The parameters varied pertain to load triaxiality, matrix anisotropy, initial porosity and initial void shape so as to include the limiting case of penny-shaped cracks. Attention is focussed on comparing the individual and coupled effects of void shape and material anisotropy on the effective stress–strain response and on the evolution of microstructural variables. In addition, the effect of matrix anisotropy on the mode of plastic flow localization is discussed. From the results, two distinct regimes of behavior are identified: (i) at high triaxialities, the effect of material anisotropy is found to be persistent, unlike that of initial void shape and (ii) at moderate triaxialities the influence of void shape is found to depend strongly on matrix anisotropy. The findings are interpreted in light of recent, microscopically informed models of porous metal plasticity. Conversely, observations are made in relation to the relevance of these results in the development and calibration of a broader set of continuum damage mechanics models.  相似文献   

3.
Molecular dynamics simulations using Modified Embedded Atom Method (MEAM) potentials were performed to analyze material length scale influences on damage progression of single crystal nickel. Damage evolution by void growth and coalescence was simulated at very high strain rates (108–1010/s) involving four specimen sizes ranging from ≈5000 to 170,000 atoms with the same initial void volume fraction. 3D rectangular specimens with uniform thickness were provided with one and two embedded cylindrical voids and were subjected to remote uniaxial tension at a constant strain rate. Void volume fraction evolution and the corresponding stress–strain responses were monitored as the voids grew under the increasing applied tractions.The results showed that the specimen length scale changes the dislocation pattern, the evolving void aspect ratio, and the stress–strain response. At small strain levels (0–20%), a damage evolution size scale effect can be observed from the damage-strain and stress–strain curves, which is consistent with dislocation nucleation argument of Horstemeyer et al. [Horstemeyer, M.F., Baskes, M.I., Plimpton, S.J., 2001a. Length scale and time scale effects on the plastic flow of FCC metals. Acta Mater. 49, pp. 4363–4374] playing a dominant role. However, when the void volume fraction evolution is plotted versus the applied true strain at large plastic strains (>20%), minimal size scale differences were observed, even with very different dislocation patterns occurring in the specimen. At this larger strain level, the size scale differences cease to be relevant, because the effects of dislocation nucleation were overcome by dislocation interaction.This study provides fodder for bridging material length scales from the nanoscale to the larger scales by examining plasticity and damage quantities from a continuum perspective that were generated from atomistic results.  相似文献   

4.
The effects of void size and hardening in a hexagonal close-packed single crystal containing a cylindrical void loaded by a far-field equibiaxial tensile stress under plane strain conditions are studied. The crystal has three in-plane slip systems oriented at the angle 60° with respect to one another. Finite element simulations are performed using a strain gradient crystal plasticity formulation with an intrinsic length scale parameter in a non-local strain gradient constitutive framework. For a vanishing length scale parameter the non-local formulation reduces to a local crystal plasticity formulation. The stress and deformation fields obtained with a local non-hardening constitutive formulation are compared to those obtained from a local hardening formulation and to those from a non-local formulation. Compared to the case of the non-hardening local constitutive formulation, it is shown that a local theory with hardening has only minor effects on the deformation field around the void, whereas a significant difference is obtained with the non-local constitutive relation. Finally, it is shown that the applied stress state required to activate plastic deformation at the void is up to three times higher for smaller void sizes than for larger void sizes in the non-local material.  相似文献   

5.
In the present paper, axisymmetric cell models containing one or two voids and athree-dimensional cell model containing two voids have been used to investigate void size andspacing effect on the ductile fracture in materials with high initial void volume fraction. They areperformed for round smooth and round notched specimens under uniaxial tension. The examplematerial used for comparison is a nodular cast iron material GGG-40 with initial void volumefraction of 7.7%. The parameters considered in this paper are void size and shape foraxisymmetric cell models containing a single void, and void distribution pattern foraxisymmetric and 3D cell models containing two voids of different sizes. The results obtainedfrom these cell models by using FEM calculations are compared with the Gurson model, theGurson–Tvergaard–Needleman model, the Rice–Tracey model and the modified Rice–Traceymodel. It can be stated that the influence of void size and void spacing on the growth in volumeof voids is very large, and it is dependent on the distribution of voids. Using non-uniform voiddistribution, the results of axisymmetric cell models can explain how a void can grow in anunstable state under very low stress triaxiality at very small strain as observed in experiments.Calculations using cell models containing two voids give very different results about the stableand unstable growth of voids which are strongly dependent on the configuration of cell model.  相似文献   

6.
The fracture toughness of ductile materials depends upon the ability of the material to resist the growth of microscale voids near a crack tip. Mechanics analyses of the elastic–plastic deformation state around such voids typically assume the surrounding material to be isotropic. However, the voids exist predominantly within a single grain of a polycrystalline material, so it is necessary to account for the anisotropic nature of the surrounding material. In the present work, anisotropic slip line theory is employed to derive the stress and deformation state around a cylindrical void in a single crystal oriented so that plane strain conditions are admitted from three effective in-plane slip systems. The deformation state takes the form of angular sectors around the circumference of the void. Only one of the three effective slip systems is active within each sector. Each slip sector is further subdivided into smaller sectors inside of which it is possible to derive the stress state. Thus the theory predicts a highly heterogeneous stress and deformation state. In addition, it is shown that the in-plane pressure necessary to activate plastic deformation around a cylindrical void in an anisotropic material is significantly higher than that necessary for an isotropic material. Experiments and single crystal plasticity finite element simulations of cylindrical voids in single crystals, both of which exhibit a close correspondence to the analytical theory, are discussed in a companion paper.  相似文献   

7.
Void growth and coalescence in single crystals are investigated using crystal plasticity based 3D finite element calculations. A unit cell involving a single spherical void and fully periodic boundary conditions is deformed under constant macroscopic stress triaxiality. Simulations are performed for different values of the stress triaxiality, for different crystal orientations, and for low and high work-hardening capacity. Under low stress triaxiality, the void shape evolution, void growth, and strain at the onset of coalescence are strongly dependent on the crystal orientation, while under high stress triaxiality, only the void growth rate is affected by the crystal orientation. These effects lead to significant variations in the ductility defined as the strain at the onset of coalescence. An attempt is made to predict the onset of coalescence using two different versions of the Thomason void coalescence criterion, initially developed in the framework of isotropic perfect plasticity. The first version is based on a mean effective yield stress of the matrix and involves a fitting parameter to properly take into account material strain hardening. The second version of the Thomason criterion is based on a local value of the effective yield stress in the ligament between the voids, with no fitting parameter. The first version is accurate to within 20% relative error for most cases, and often more accurate. The second version provides the same level of accuracy except for one crystal orientation. Such a predictive coalescence criterion constitutes an important ingredient towards the development of a full constitutive model for porous single crystals.  相似文献   

8.
In many ductile metallic alloys, the damage process controlled by the growth and coalescence of primary voids nucleated on particles with a size varying typically between 1 and 100 μm, is affected by the growth of much smaller secondary voids nucleated on inclusions with a size varying typically between 0.1 and 3 μm. The goal of this work is first to quantify the potential effect of the growth of these secondary voids on the coalescence of primary voids using finite element (FE) unit cell calculations and second to formulate a new constitutive model incorporating this effect. The nucleation and growth of secondary voids do essentially not affect the growth of the primary voids but mainly accelerate the void coalescence process. The drop of the ductility caused by the presence of secondary voids increases if the nucleation strain decreases and/or if their volume fraction increases and/or if the primary voids are flat. A strong coupling is indeed observed between the shape of the primary voids and the growth of the second population enhancing the anisotropy of the ductility induced by void shape effects. The new micromechanics-based coalescence condition for internal necking introduces the softening induced by secondary voids growing in the ligament between two primary voids. The FE cell calculations were used to guide and assess the development of this model. The use of the coalescence condition relies on a closed-form model for estimating the evolution of the secondary voids in the vicinity of a primary cavity. This coalescence criterion is connected to an extended Gurson model for the first population including the effect of the void aspect ratio. With respect to classical models for single void population, this new constitutive model improves the predictive potential of damage constitutive models devoted to ductile metal while requiring only two new parameters, i.e. the initial porosity of second population and a void nucleation stress, without any additional adjustment.  相似文献   

9.
Finite element (FE) calculations of a cylindrical cell containing a spherical hole have been performed under large strain conditions for varying triaxiality with three different constitutive models for the matrix material, i.e. rate independent plastic material with isotropic hardening, visco-plastic material under both isothermal and adiabatic conditions, and porous plastic material with a second population of voids nucleating strain controlled. The “mesoscopic” stress-strain and void growth responses of the cell are compared with predictions of the modified Gurson model in order to study the effects of varying triaxiality and strain rate on the critical void volume fraction. The interaction of two different sizes of voids was modelled by changing the strain level for nucleation and the stress triaxiality. The study confirms that the void volume fraction at void coalescence does not depend significantly on the triaxiality if the initial volume fraction of the primary voids is small and if there are no secondary voids. The strain rate does not affect fc either. The results also indicate that a single internal variable, f, is not sufficient to characterize the fracture processes in materials containing two different size-scales of void nucleating particles.  相似文献   

10.
This paper examines the combined effects of temperature, strain gradient and inertia on the growth of voids in ductile fracture. A dislocation-based gradient plasticity theory [J. Mech. Phys. Solids 47 (1999) 1239, J. Mech. Phys. Solids 48 (2000) 99] is applied, and temperature effects are incorporated. Since a strong size-dependence is introduced into the dynamic growth of voids through gradient plasticity, a cut-off size is then set by the stress level of the applied loading. Only those voids that are initially larger than the cut-off size can grow rapidly. At the early stages of void growth, the effects of strain gradients greatly increase the stress level. Therefore, thermal softening has a strong effect in lowering the threshold stress for the unstable growth of voids. Once the voids start rapid growth, however, the influence of strain gradients will decrease, and the rate of dynamic void growth predicted by strain gradient plasticity approaches that predicted by classical plasticity theories.  相似文献   

11.
A mechanism of ductile fracture involving the interaction of relatively large voids with small-scale voids is studied by a computational model. The larger voids are described as circular cylindrical holes arranged in a doubly periodic array in the initial state. In the matrix material between these voids the nucleation and growth of much smaller voids is accounted for by using approximate constitutive equations for a ductile, porous medium. The computations show bands of highly localized straining and void growth, initiating at the surfaces of larger voids and growing into the matrix material, until the bands connect two neighbouring voids. The materials are analysed both under plane strain conditions and under conditions approximating those in a round tensile bar. The failure strains obtained under different principal stress ratios show rather good agreement when plotted against a measure of the stress-triaxiality.  相似文献   

12.
Infinite band calculations indicate that the process of flow localization in voided solids is highly sensitive to non-uniformity in void distribution. In this paper, a model is proposed for an elastic-plastic solid with an excess of voids in a disk-shaped cluster embedded in a uniform background distribution. The model is used to study the effect of a void cluster on plastic flow localization. Substantial reductions in ductility due to nonuniformity only occur for quite large clusters when the triaxiality of the overall stresses is low, as in uniaxial tension. At higher stress triaxialities, a small cluster can be severely deleterious.  相似文献   

13.
We have examined the problem of the dynamic growth of a single spherical void in an elastic-viscoplastic medium, with a view towards addressing a number of problems that arise during the dynamic failure of metals. Particular attention is paid to inertial, thermal and rate-dependent effects, which have not previously been thoroughly studied in a combined setting. It is shown that the critical stress for unstable growth of the void in the quasistatic case is strongly affected by the thermal softening of the material (in adiabatic calculations). Thermal softening has the effect of lowering the critical stress, and has a stronger influence at high strain hardening exponents. It is shown that the thermally diffusive case for quasistatic void growth in rate-dependent materials is strongly affected by the initial void size, because of the length scale introduced by the thermal diffusion. The effects of inertia are quantified, and it is demonstrated that inertial effects are small in the early stages of void growth and are strongly dependent on the initial size of the void and the rate of loading. Under supercritical loading for the inertial problem, voids of all sizes achieve a constant absolute void growth rate in the long term. Inertia first impedes, but finally promotes dynamic void growth under a subcritical loading. For dynamic void growth, the effect of rate-hardening is to reduce the rate of void growth in comparison to the rate-independent case, and to reduce the final relative void growth achieved.  相似文献   

14.
15.
A nonlocal elastic–plastic material model is used to show that the rate of void growth is significantly reduced when the voids are small enough to be comparable with a characteristic material length. For a very small void in the material between much larger voids the competition between an increased growth rate due to the stress concentrations around the larger voids and a reduced growth rate due to the nonlocal effects is studied. The analyses are based on an axisymmetric unit cell model with special boundary conditions, which allow for a relatively simple investigation of a full three dimensional array of spherical voids. It is shown that the high growth rate of very small voids predicted by conventional plasticity theory is not realistic when the effect of a characteristic length, dependent on the dislocation structure, is accounted for.  相似文献   

16.
本文求解平面应变状态下磁电弹复合材料半平面和刚性导电导磁圆柱压头的二维微动接触问题。假设压头具有良好的导电导磁性,且表面电势和磁势是常数。微动接触依赖载荷的加载历史,所以首先求解单独的法向加载问题,然后在法向加载问题的基础上求解循环变化的切向加载问题。整个接触区可以分为内部的中心粘着区和两个外部的滑移区,其中滑移区满足Coulomb摩擦法则。利用Fourier积分变换,磁电弹半平面的微动接触问题将简化为耦合的Cauchy奇异积分方程组,然后数值离散为线性代数方程组,利用迭代法求解未知的粘着/滑移区尺寸、电荷分布、磁感应强度、法向接触压力和切向接触力。数值算例给出了摩擦系数、总电荷和总磁感应强度对各加载阶段的表面接触应力、电位移和磁感应强度的影响。  相似文献   

17.
通过编制率相关有限元用户子程序,采用一个单胞模型研究了FCC晶体中孔洞在单晶及晶界的长大行为,分析了由于晶体取向及变形失配对孔洞长大和聚合的影响。研究结果表明:孔洞的形状和长大方向与晶体取向密切相关;晶界上孔洞的长大速度大于单晶中孔洞的长大速度;晶粒间的变形失配加速了晶界上孔洞的长大趋势,因而使材料易发生沿晶断裂,随着晶粒间取向因子差异的增加,孔洞越易沿着晶界长大。  相似文献   

18.
This paper presents a micromechanical model for a porous viscoplastic material containing two populations of pressurized voids of different sizes. Three scales are distinguished: the microscopic scale (corresponding to the size of the small voids), the mesoscopic scale (corresponding to the size of the large voids) and the macroscopic scale. It is assumed that the first homogenization step is performed at the microscopic scale, and, at the mesoscopic scale, the matrix is taken to be homogeneous and compressible. At the mesoscopic scale, the second homogenization step, on which the present study focuses, is based on a simplified representative volume element: a hollow sphere containing a pressurized void surrounded by a nonlinear viscoplastic compressible matrix. The nonlinear behavior of the matrix, which is expressed using the results obtained in the first homogenization step, is approached using a modified secant linearization procedure involving the discretization of the hollow sphere into concentric layers. Each layer has uniform secant moduli. The predictions of the model are compared with the more accurate numerical results obtained using the finite element method. Good agreement is found to exist with all the macroscopic stress triaxialities and all the porosity and nonlinearity values studied.  相似文献   

19.
Recent studies revealed that rapid void growth is the dominant failure mechanism in an elasto-plastic solid under high mean tensile stress. This paper studies the effect of the surface energy and void size to the void growth. The models of a thick spherical shell and a thick spherical column in void growth are analyzed and numerically estimated. The main conclusion from this study is that, for typical metals, the surface energy effect is negligible for voids larger than 100 nm in size, but it may become significant when the void size is on the order of 10 nm.  相似文献   

20.
Spall fracture and other rapid tensile failures in ductile materials are often dominated by the rapid growth of voids. Recent research on the mechanics of void growth clearly shows that void nucleation may be represented as a bifurcation phenomenon, wherein a void forms spontaneously followed by highly localized plastic flow around the new void. Although thermal, viscoplastic, and work hardening effects all play an essential role in the earliest stages of nucleation and growth, the flow becomes dominated by spherical radial inertia, which soon causes all voids to grow asymptotically at the same rate, regardless of differences in initial conditions or constitutive details, provided only that there is the same density of matrix material and the same excess loading history beyond the cavitation stress.These two facts, initiation by bifurcation at a cavitation stress, at which a void first appears, and rapid domination by inertia, are used to postulate a simple, but physically realistic, model for nucleation and early growth of voids in a ductile material under rapid tensile loading. A reasonable statistical distribution for the cavitation stress at various nucleation sites and a simple similarity solution for inertially dominated void growth permit a simple calculation of the initiation and early growth of porosity in the material.Parametric analyses are presented to show the effect that loading rate, peak loading stress, density of nucleation sites, physical properties of the material, etc. have on the applied pressure and distribution of void sizes when a critical porosity is reached.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号