首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent advances in high-resolution electron backscatter diffraction (EBSD)-based microscopy are applied to the characterization of elastic fields and incompatibility structures near the grain boundaries (GBs) in polycrystals. Two main recoveries are reported here: surface geometrically necessary dislocation (density) tensors, as described by Kröner, and the elastic fields near cracks (unconsolidated portions of interface) in loaded samples. Context for the application of these recoveries is described, using Green’s function solutions for combined heterogeneity and dislocation. Featured recoveries required the cross-correlation based determination of the elastic distortion tensor, aided by application of the simulated pattern method, and determination of the absolute pattern center utilizing the expected pattern properties in a spherical Kikuchi reference frame. High-resolution data obtained along an ultrasonically consolidated nickel boundary of varying amalgamation indicates that the imposed traction free boundary condition at free surfaces is well observed in the data structure. Further, high-resolution data acquired near a single grain boundary in well-annealed, low content steel suggests that it may be possible to measure the intrinsic elastic properties of GBs.  相似文献   

2.
The localization of plastic deformation is discussed as “stationary discontinuity” characterized by a vanishing velocity of an acceleration wave derived using the author’s proposed theory of ultrasonic wave velocities propagating in plastically deformed solids. To formulate the proposed theory, the elasto-plastic coupling effect was introduced to consider the elastic stiffness degradation due to the plastic deformation. The driving force of the deformation localization is caused by the yield vertex effect, which introduces a pronounced softening of the shear modulus, and geometrical softening due to double slip caused by lattice rotations. In the present paper, it is examined theoretically and experimentally that the diagonal terms of the introduced elasto-plastic coupling tensor represent a slight hardening followed by a pronounced softening of the elastic modulus induced by the point defect development caused by cross slides among dislocations at multiple slip stages similar to the yield vertex effects. The off-diagonal terms represent geometrical softening induced by lattice rotations such as texture evolution. Then, based on the coincidence of the onset strains between localization and acceleration waves of vanishing velocity, the diagrams of diffuse necking, localized necking and forming limit are analyzed by applying the proposed acoustic tensor, which is based on the generalized Christoffel tensor derived by the author, and solving cut off conditions of the quasi-longitudinal wave to determine the onset strains of deformation localization and localization modes. As a result, diagrams of diffuse necking, localized necking and forming limit were obtained. Moreover, the localization modes were determined and distinguished as the SH-mode, SV-mode, tearing mode and splitting mode.  相似文献   

3.
结合震害调研及数值分析可知,结构最终失效可能仅由部分关键构件破坏引起,大部分构件仍处于弹性或小变形状态。因此为提高计算效率,在结构全过程分析中一致采用非线性单元建模并非必要,同时为准确考虑关键构件的非线性响应,本文提出一种新的数值子结构建模策略。进入弹塑性状态后,针对一般钢构件或钢筋混凝土构件采用动态替换子结构方法在单元或截面层次将其替换成非线性单元或非线性截面,并基于OpenSees平台开发了两类新单元予以实现;针对可能发生严重损伤的关键构件,采用隔离子结构方法将其隔离并建立精细化分析模型,考虑主、子结构间不同尺度边界耦合,并推导了切线刚度的传递关系,采用Client/Server技术在OpenSees平台开发了一类新的接口单元予以实现主、子结构之间的信息传递。为验证新开发单元的合理性,分别以钢及钢筋混凝土平面框架结构为例,采用纤维单元、动态替换子结构方法以及隔离子结构方法建模进行静、动力分析。计算结果表明,采用本文提出的动态替换子结构方法与常规建模方法的计算结果完全吻合并且可大幅缩短计算耗时,随着荷载水平的增大,结构中受到动态替换的构件比例急剧增大,计算效率提高程度略有降低,但仍远高于常规模型;采用本文提出的接口单元可准确传递主、子结构间的界面信息,为隔离数值子结构方法在结构弹塑性分析中的应用提供了基础。  相似文献   

4.
The plastic zone of the growing mode III crack in an elastic perfectly plastic solid consists of two sectors in contact with each other. The sector closer to the crack plane, first studied analytically by Chitaley and McClintock (CM), consists of a fan of straight maximum shear stress trajectories that are focused on the crack tip. The other sector, first analyzed numerically by Dean and Hutchinson (DH), is a ‘radial’ fan of straight lines that are not focused at the crack tip or at another common point. In this paper it is shown with use of the dislocation density field that the need that the stress magnitude in the plastic wake be below the yield stress requires the existence of an unfocused fan in the DH sector. It appears unlikely that this result can be obtained without explicit use of dislocations.  相似文献   

5.
针对局部子结构为修正对象的情况提出了约束子结构修正法,实现只利用整体结构模态中对 应子结构部分的模态即可以修正子结构模型. 由脉冲响应结合特征系统实现法识别出子结构的低阶模态; 结合识别的模态和整体结构理论模型的高阶模态构造整体结构对应子结构位置的柔度矩 阵;利用柔度矩阵的物理意义,在子结构的边界上施加数值支座,把子结构从整体结构 中隔离出来成为约束子结构,同时构造出约束子结构的柔度矩阵;利用灵敏度的方法根 据构造出的约束子结构柔度矩阵,优化修正约束子结构,即间接等效地修正子结构模型. 通过一个平面桁架结构验证了约束子结构模型修正法的可行性与有效性,即使在5%或 10%的噪声影响下,仍能得到满意的修正结果. 关键词 模型修正,柔度矩阵,约束子结构,灵敏度,修正单元力  相似文献   

6.
7.
Crystal plasticity finite element analysis of cyclic deformation of compatible type FCC bicrystals are performed. The model specimen used in the analysis is a virtual FCC bicrystal with an isotropic elastic property; therefore, the effect of constraint due to elastic incompatibility does not appear. The results of the analysis show the strain-amplitude-dependence of both the organization of the GND structure and the stress–strain behavior. The calculated stress–strain curve with the largest strain amplitude shows additional cyclic hardening. The microscopic mechanisms of the strain-amplitude-dependent organization of the GND structure and additional cyclic hardening behavior are discussed in terms of the activation of secondary slip system(s). Finally, the effects of the elastic anisotropy, the lattice friction stress and the interaction between dislocations are also argued.  相似文献   

8.
To describe the yield-point phenomena of steels, an extended version of the first author’s model (Yoshida, F., 2000. A constitutive model of cyclic plasticity. International Journal of Plasticity 16, 359–380) is proposed on the premise that the material behavior of sharp yield point and the subsequent abrupt yield drop result from a rapid dislocation multiplication and the stress-dependence of dislocation velocity. A specific feature of this model is that it describes well a high upper yield point, the rate-dependent Lüders strain at the yield plateau and the subsequent workhardening, as well as cyclic plasticity characteristics, such as the Bauschinger effect and rate-dependent ratcheting. Using this model, an FE simulation of temper rolling process is conducted in order to clarify its role for the elimination of the yield point of steel sheets. Particularly, the effect of upper yield point on the deformation characteristics in the process is discussed.  相似文献   

9.
Here homogenization theory is used to establish a connection between the symmetries of a periodic elastic structure associated with the microscopic properties of an elastic material and the material symmetries of the effective, macroscopic elasticity tensor. Previous results of this type exist but here more general symmetries on the microscale are considered. Using an explicit example, we show that it is possible for a material to be fully anisotropic on the microscale and yet the symmetry group on the macroscale can contain elements other than plus or minus the identity. Another example demonstrates that not all material symmetries of the macroscopic elastic tensor are generated by symmetries of the periodic elastic structure.  相似文献   

10.
Summary By incorporating local grain orientation, grain geometry and macroscopic elastic properties, a numerical procedure has been developed for computational prediction of mesoscopic stress and strain distributions in simulated polycrystalline material samples. The numerical procedure is developed on the basis of the concept of grain-average fields, Kröner–Kneer model, Waldvogel-Rodin algorithm and a self-adaptive method. Repeated computer tests were performed to investigate mesoscopic stress variation in the samples, and find coherent interrelations of material structure weaknesses (MSWs) with local microstructure of the samples. It was found that the stronger the single crystal elastic anisotropy, the stronger the inhomogeneity of mesoscopic stress distribution. Not only the elastic anisotropy, but also the grain geometry, may produce significant local stress disturbances. It has been found that the defined orientation-geometry factor and correlation parameter are two adequate physical quantities which account for synergetic interactions due to grain-orientation geometry-induced anisotropy. By using the two quantities, MSWs can be well correlated with local microstructure. Computer tests also show that 250–400 conjoining grains are necessary to homogenize the mesoscopic stress distribution in the considered materials.  相似文献   

11.
Nonsingular, stressed, dislocation (wall) profiles are shown to be 1-d equilibria of a non-equilibrium theory of Field Dislocation Mechanics (FDM). It is also shown that such equilibrium profiles corresponding to a given level of load cannot generally serve as a travelling wave profile of the governing equation for other values of nearby constant load; however, one case of soft loading with a special form of the dislocation velocity law is demonstrated to have no ‘Peierls barrier’ in this sense. The analysis is facilitated by the formulation of a 1-d, scalar, time-dependent, Hamilton-Jacobi equation as an exact special case of the full 3-d FDM theory accounting for non-convex elastic energy, small, Nye-tensor-dependent core energy, and possibly an energy contribution based on incompatible slip. Relevant nonlinear stability questions, including that of nucleation, are formulated in a non-equilibrium setting. Elementary averaging ideas show a singular perturbation structure in the evolution of the (unsymmetric) macroscopic plastic distortion, thus pointing to the possibility of predicting generally rate-insensitive slow response constrained to a tensorial ‘yield’ surface, while allowing fast excursions off it, even though only simple kinetic assumptions are employed in the microscopic FDM theory. The emergent small viscosity on averaging that serves as the small parameter for the perturbation structure is a robust, almost-geometric consequence of large gradients of slip in the dislocation core and the persistent presence of a large number of dislocations in the averaging volume. In the simplest approximation, the macroscopic yield criterion displays anisotropy based on the microscopic dislocation line and Burgers vector distribution, a dependence on the Laplacian of the incompatible slip tensor and a nonlocal term related to a Stokes-Helmholtz-curl projection of an ‘internal stress’ derived from the incompatible slip energy.  相似文献   

12.
13.
孙吉主  王勇 《力学季刊》2006,27(3):476-480
基于接触面的宏、细观物理特征,建立了单调加载条件下钙质砂与结构接触面的弹塑性增量本构关系。从接触面的宏观条件上考虑,该模型将弹性模量取为法向压力的指数函数,采用非关联流动法则和Mohr-columb屈服函数,以及切向塑性功为硬化参量,适用于多数接触摩擦问题。在细观上将滑动面抽象为锯齿面,同时将摩擦系数取为塑性功的双曲线函数,以考虑钙质砂颗粒破碎对接触面力学特性的影响。模型概念简单、参数较少,通过理论计算与钙质砂拉拔试验结果比较,显示了模型的合理性。  相似文献   

14.
15.
An elastoplastic damage model considering progressive imperfect interface is proposed to predict the effective elastoplastic behavior and multi-level damage progression in fiber-reinforced metal matrix composites (FRMMCs) under transverse loading. The modified Eshelby’s tensor for a cylindrical inclusion with slightly weakened interface is adopted to model fibers having mild or severe imperfect interfaces [Lee, H.K., Pyo, S.H., 2009. A 3D-damage model for fiber-reinforced brittle composites with microcracks and imperfect interfaces. J. Eng. Mech. ASCE. doi:10.1061/(ASCE)EM.1943-7889.0000039]. An elastoplastic model is derived micromechanically on the basis of the ensemble-volume averaging procedure and the first-order effects of eigenstrains. A multi-level damage model [Lee, H.K., Pyo, S.H., 2008a. Multi-level modeling of effective elastic behavior and progressive weakened interface in particulate composites. Compos. Sci. Technol. 68, 387–397] in accordance with the Weibull’s probabilistic function is then incorporated into the elastoplastic multi-level damage model to describe the sequential, progressive imperfect interface in the composites. Numerical examples corresponding to uniaxial and biaxial transverse tensile loadings are solved to illustrate the potential of the proposed micromechanical framework. A series of parametric analysis are carried out to investigate the influence of model parameters on the progression of imperfect interface in the composites. Furthermore, a comparison between the present prediction and experimental data in the literature is made to assess the capability of the proposed micromechanical framework.  相似文献   

16.
We consider a dissipative model recently proposed by M. Frémond to describe the evolution of damage in elastic materials. The corresponding PDEs system consists of an elliptic equation for the displacements with a degenerating elastic coefficient coupled with a variational dissipative inclusion governing the evolution of damage. We prove a local-in-time existence and uniqueness result for an associated initial and boundary value problem, namely considering the evolution in some subinterval where the damage is not complete. The existence result is obtained by a truncation technique combined with suitable a priori estimates. Finally, we give an analogous local-in-time existence and uniqueness result for the case in which we introduce viscosity into the relation for macroscopic displacements such that the macroscopic equilibrium equation is of parabolic type.Received: 31 July 2002, Accepted: 9 August 2003, Published online: 21 November 2003Correspondence to: E. Bonetti  相似文献   

17.
基于局部模态的约束子结构模型修正法   总被引:2,自引:0,他引:2  
针对局部子结构为修正对象的情况提出了约束子结构修正法,实现只利用整体结构模态中对应子结构部分的模态即可以修正子结构模型.由脉冲响应结合特征系统实现法识别出子结构的低阶模态;结合识别的模态和整体结构理论模型的高阶模态构造整体结构对应子结构位置的柔度矩阵;利用柔度矩阵的物理意义,在子结构的边界上施加数值支座,把子结构从整体结构中隔离出来成为约束子结构,同时构造出约束子结构的柔度矩阵;利用灵敏度的方法根据构造出的约束子结构柔度矩阵,优化修正约束子结构,即间接等效地修正子结构模型.通过一个平面桁架结构验证了约束子结构模型修正法的可行性与有效性,即使在5%或10%的噪声影响下,仍能得到满意的修正结果.  相似文献   

18.
基于虚内键理论的材料多尺度力学模型   总被引:4,自引:0,他引:4  
宏观上线弹性材料的力学属性只需杨氏模量和泊松比两个相互独立的参量来控制;相应地,微观上也需要两个相互独立的参量来控制.基于这个思想,在原VIB模型中引入了切向键,并提出了VMIB模型.该模型在材料的宏观力学属性与微观虚拟键力学属性之间建立起了一座桥梁.考虑到模型中能量密度函数含有坐标轴方向向量一项,该文对能量密度函数的张量性进行了严格的数学证明,并将VMIB模型初步应用到脆性材料的单轴受压破坏.  相似文献   

19.
A multi-scale constitutive model for the small deformations of semi-crystalline polymers such as high density Polyethylene is presented. Each macroscopic material point is supposed to be the center of a representative volume element which is an aggregate of randomly oriented composite inclusions. Each inclusion consists of a stack of parallel crystalline lamellae with their adjacent amorphous layers.Micro-mechanically based constitutive equations are developed for each phase. A viscoplastic model is used for the crystalline lamellae. A new nonlinear viscoelastic model for the amorphous phase behavior is proposed. The model takes into account the fact that the presence of crystallites confines the amorphous phase in extremely thin layers where the concentration of chain entanglements is very high. This gives rise to a stress contribution due to elastic distortion of the chains. It is shown that the introduction of chains’ elastic distortion can explain the viscoelastic behavior of crystalline polymers. The stress contribution from elastic stretching of the tie molecules linking the neighboring lamellae is also taken into account.Next, a constitutive model for a single inclusion considered as a laminated composite is proposed. The macroscopic stress-strain behavior for the whole RVE is found via a Sachs homogenization scheme (uniform stress throughout the material is assumed).Computational algorithms are developed based on fully implicit time-discretization schemes.  相似文献   

20.
Suitable macroscopic quantities beyond effective elastic properties are used to assess the distribution of stress within a composite. The composite is composed of N anisotropic linearly elastic materials and the length scale of the microstructure relative to the loading is denoted by ε. The stress distribution function inside the composite λε(t) gives the volume of the set where the norm of the stress exceeds the value t. The analysis focuses on the case when 0<ε?1. A rigorous upper bound on limε→0λε(t) is found. The bound is given in terms of a macroscopic quantity called the macro stress modulation function. It is used to provide a rigorous assessment of the volume of over stressed regions near stress concentrators generated by reentrant corners or by an abrupt change of boundary loading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号