首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two nickel (imidazole) complexes, Ni(im)6Cl2·4H2O (1) and Ni(im)6(NO3)2 (2) (im=imidazole) have been synthesized and characterized by elemental analysis, IR, UV, TG and single crystal X-ray diffraction. 1 crystallizes in the triclinic space group P-1 with a=8.800(6) Å, b=9.081(6) Å, c=10.565(7) Å, =75.058(9)°, β=83.143(8)°, γ=61.722(8)°, V=718.3(8) Å3, Z=1 and R1 (wR2)=0.0469 (0.1497). 2 crystallizes in the trigonal space group R-3 with a=12.370(6) Å, b=12.370(6) Å, c=14.782(14) Å, =90.00°, β=90.00°, γ=120.00°, V=1959(2) Å3, Z=3 and R1 (wR2)=0.0358 (0.0955). 1 and 2 exhibit different supramolecular network due to their different counter anions and different hydrogen bonding connection. In compound 1, [Ni(im)6]2+ cation and counter anions Cl alternatively array in an ABAB fashion via N–HCl hydrogen bonding. In compound 2, the plane of each NO32− is almost parallel and each NO32− connect three different [Ni(im)6]2+ cations via N–HO hydrogen bonding.  相似文献   

2.
The electrophoretic motion of an entity comprised of a rigid, uncharged core covered by a charge-regulated membrane which simulates a biological cell, in a general a:b electrolyte solution is analyzed. The membrane carries a fixed charge which arises from the dissociation of the acidic functional group HA. We show that the higher the concentration of cations in the bulk liquid phase, the lower the absolute Donnan potential, D, and the lower the concentration of functional group, N0, the lower the D. Also, the higher the pH, the higher the absolute electrical potential, and the greater the N0, the lower the pH. The absolute mobility of a cell, μ, increases with pH, but decreases with the increase in the friction coefficient of the membrane phase, γ. For a fixed total number of HA, if γ is large, μ/μs is less than unity, μs being the mobility of the corresponding rigid particle, and it decreases with the thickness of membrane d, and the inverse is true if γ is small. For a medium γ, the variation of μ/μs as a function of d has a local maximum, and depending upon d, it can be either greater or less than unity.  相似文献   

3.
Gas electron diffraction is applied to determine the geometric parameters of the silacyclobutane molecule using a dynamic model where the ring puckering was treated as a large amplitude motion. The structural parameters and the parameters of the potential function were refined taking into account the relaxation of the molecular geometry estimated from ab initio calculations at the MP2/6-311+G(d, p) level of theory. The potential function has been described as V() = V0[(/e)2 − 1]2 with the following parameters V0 = 0.82 ± 0.60 kcal/mol and e = 33.5 ± 2.7°, where is a puckering angle of the ring.

The geometric parameters at the minimum V() (ra in Å, in degrees and uncertainties given as three times the standard deviations including a scale error) are: r(Si–Hax) = 1.467(96), r(Si–Heq) = 1.468(96), r(Si–C) = 1.885(2), r(C–C) = 1.571(3), r(C–H) = 1.100(3), CSiC = 77.2(9), HSiH = 108.3, SiCHeq = 123.5(16), SiCHax = 111.9(16), CC5Heq = 118.4(24), CC5Hax = 112.3(24), HC3H = 107.7, δ(HSiH) = 6.6, δ(HC3H) = 7.0, where the tilts δ, HSiH, and HC3H are estimated from ab initio constraints. The structural parameters are compared with those obtained for related compounds.  相似文献   


4.
The paper presents a new method for predicting the frequency of the b1 mode, which is infrared-inactive, in complexes of the type LM(CO)5 belonging to C4V point group. The method was based on the relation λ3=λ4+[(1−δ/δ)](λ1λ2), where δ=(λ1λ2)/(λ1λ2+λ3λ4), λ1, λ2, λ3 and λ4 are the λ parameters of the , , b1 and e modes, respectively. For a large numbers of complexes of the type LM(CO)5 the average value of δ was found to be 0.80, with a standard deviation of 0.02. With the use of average value of δ, the frequencies of b1 mode were estimated. The result obtained indicated that there exists a rather good fit between observed and calculated frequencies, with a mean error of 2.7 cm−1. In addition, it was shown that the δ parameter can be used as a criterion of the correct band assignment for the complexes understudy.  相似文献   

5.
A new technique, called interpolation method, with general application in the kinetic analysis of processes studied by thermogravimetry (TG) under linear temperature programming is developed. It is based on the linear relationship, with slope 1, between log g() and log I(γ, θ) for the appropriate kinetic function, where I(γ, θ) is the normalized temperature integral, θ the normalized temperature (θ=T/T0) and γ a dimensionless activation energy (γ=E/RT0). Values of log I(γ, θ) are calculated by linear interpolations in a pre-built table. This method can easily be programmed and implemented in a personal computer, where the results (kinetic parameters and quality of regressions for the kinetic functions considered) are typically obtained in a very short time. The method is validated by analyzing different simulated thermogravimetric curves and comparing the results with those determined with some classic methods taken from the literature. In addition, the results are compared with the values obtained by a similar method, also developed and explained in this paper, which involves the evaluation of all the values of the temperature integral by numerical integration, therefore, demanding a much larger calculation time. The interpolation method is found to be more accurate than other published methods, particularly in the case of thermogravimetric curves corresponding to processes with low activation energies. The results obtained are always similar to those determined by the integration method, which is taken as reference. Application of the technique to experimental data for various types of reactions shows that the results are in agreement with the published parameters and kinetic laws.  相似文献   

6.
2,3,4-triphenyl-1-oxa-4-azabutadine (C20H15NO) has been studied by X-ray analysis and AM1 molecular orbital methods. It crystallises in the triclinic space group P-1 with a=9.414(3), b=10.479(3), c=8.385(2) Å, =103.31(3)°, β=97.10(3)°, γ=74.09(1)°, V=772.5(4) Å3, Z=2, Dc=1.227 gcm−3, and μ(MoK)=0.075 mm−1 and F000=300. The structure was solved by direct methods and refined to R=0.043 for 2672 reflections [I>2σ(I)]. The conformational analysis of the title compound were investigated by semi-empirical quantum mechanical AM1 calculations. The minimum conformation energies were calculated as a function of the three torsion angles θ1(O(1)C(7)C(8)N(1)), θ2(C(8)N(1)C(15)C(16)) and θ3(C(14)C(9)C(8)N(1)). The results are compared with the X-ray results. C=O and C=N groups are twisted about each other by 95.5(2)°.  相似文献   

7.
A method for predicting an analytical equation of state for polymer mixtures and blends from surface tension and liquid state density at normal (ordinary) temperature (γn, ρn), as scaling constants, is presented. B2(T) follows a promising corresponding-states principle. Calculation of (T) and b(T), the two other temperature-dependent constants of the equation of state, are made possible by scaling. As a result, γn and ρn are sufficient for determination of thermophysical properties of polymer mixtures and blends.

We applied the procedure to predict liquid density of poly(ethylene glycol) (PEG-200) + 1-octanol solutions and poly(propylene glycol) (PPG) + poly(ethylene glycol) (PEG-200) blends at compressed state with temperature range from 298.15 to 338.15 K and pressures up to 40 MPa. In this work, the ISM EoS is extended to polymer mixtures and blends as well as pure case without proposing any mixing rule.  相似文献   


8.
The molecular structures of n-hexane were determined by RHF/4-21G ab initio geometry optimization at 30° grid points in its three-dimensional τ1(C11–C8–C5–C1), τ2(C14–C11–C8–C5), τ3(C17–C14–C11–C8) conformational space. Of the resulting 12×12×12=1728 grid structures, 468 are symmetrically non-equivalent and were optimized constraining the torsions τ1, τ2, and τ3 to the respective grid points, while all other structural parameters were relaxed without any constraints. From the results, complete parameter surfaces were constructed using natural cubic spline functions, which make it possible to calculate parameter gradients, |P|=[(∂P/∂τi)2+(∂P/∂τj)2]1/2, where P is a C–C bond length or C–C–C angle. The parameter gradients provide an effective measure of the torsional sensitivity of the system and indicate that dynamic activities in one part of the molecule can significantly affect the density of states, and thus the contributions to vibrational entropy, in another part. This opens the possibility of dynamic entropic conformational steering in complex molecules; i.e. the generation of free energy contributions from dynamic effects of one part of a molecule on another. When the conformational trends in the calculated C–C bond lengths and C–C–C angles are compared with average parameters taken from some 900 crystallographic structures containing n-hexyl fragments or longer C–C bond sequences, some correlation between calculated and experimental trends in angles is found, in contrast to the bond lengths for which the two sets of data are in complete disagreement. The results confirm experiences often made in crystallography. That is, effects of temperature, crystal structure and packing, and molecular volume effects are manifested more clearly in bond lengths than bond angles which depend mainly on intramolecular properties. Frequency analyses of the τ1, τ2 and τ3 torsional angles in the crystal structures show conformational steering in the sense that, if τ1 is trans peri-planar (170°≤τ1≤180°; −180°≤τ1≤−170°), the values of τ2 and τ3 are clustered closely around the ideal gauche (±60°) and trans (±180°) positions. In contrast, when τ1 is in the region (50°≤τ1≤70°), there is a definite increase in the populations of τ2 and τ3 at −90 and −150°.  相似文献   

9.
采用水热技术,合成了一种新型四帽Keggin结构多酸化合物[H3Mo8V8O40(AsO4)](en)2(4,4-bipy)7·9H2O(en:乙二胺;bipy:联吡啶)(1),并对化合物进行了元素分析、红外光谱、X射线光电子能谱和X射线单晶结构分析。 晶体结构分析表明, 化合物属三斜晶系,P1空间群,晶胞参数a=1.47395(5) nm,b=1.48172(6) nm,c=1.62881(7) nm,α=66.16(3)°,β=87.15(2)°,γ=63.42(1)°,V=2.8723(2) nm3,Z=1,R1=0.0728,wR2=0.2014。 化合物由四帽Keggin多酸阴离子、4,4'-联吡啶、乙二胺和结晶水分子构成,化合物分子间存在大量的氢键,使化合物1形成3-D超分子结构。 荧光测试表明,化合物1能发出较强的荧光,有可能成为潜在的光活性材料。  相似文献   

10.
Anion exchange membrane has been investigated in different electrolyte solutions by chronopotentiometry to explore the influence of co-ion and counterion of the exchange group of the membrane, on the transport phenomena. Chloride, nitrate, sulfate and acetate in sodium salts were used as counterions and sodium, potassium, calcium and ammonium in chloride salts were used as co-ions. The membrane showed a potential drop (E0) in all these electrolytes when a constant current was applied across it, which remained constant for a period less than τ, called the transition time and rose gradually to a maximum (Emax) value. The parameters such as τ, E0 and Emax and the potential jump (ΔE) and τ and the inflection zone (Δt) along the time axis have been measured and compared at an applied current density (I) of 10 mA cm−2 in 10 mM solutions. The values of τ1/2/zA[A0] or τ1/2/zC[C0], with or , E0 and ΔE with or (where rA and rC are the ionic radii of counter and co-ions, respectively) have been correlated. Permselectivity (P) and transference number of the membrane with respect to each one of the above electrolytes have been evaluated and discussed.  相似文献   

11.
The reactions of γ-irradiation on 5 nm β-FeOOH in the presence of isopropanol and water have been investigated. In the initial stage of the γ-irradiation, β-FeOOH turned into -FeOOH. With the γ-irradiation continued, -FeOOH was slowly reduced to Fe3O4. After the γ-irradiation with a dose of 64.3 kGy, all the β-FeOOH and -FeOOH disappeared and the product was a single phase of Fe3O4, which had an average particle size of 54 nm. The process of this reaction is discussed. The γ-irradiation of β-FeOOH should be a new method of preparing magnetite.  相似文献   

12.
One novel chiral copper(II) complex was successfully synthesized from the reaction of chiral 1,3-thiazolidine-2-thione ligand with CuCl2 in dichloromethane in the presence of Et3N and DMAP at room temperature. Its unique crystal structure was unambiguously disclosed by X-ray analysis. The crystal is tetragonal, space group I4(1), space group a=15.0875(11), b=15.0875(11), c=19.362(3) Å, =90, β=90, γ=90°, V=4407.4(8) Å3, Z=8, ρcalc=1.639 mg cm−3.  相似文献   

13.
Triphenyltelluronium hexachloroplatinate (1), hexachloroiridate (2), tetrachloroaurate (3), and tetrachloroplatinate (4) were prepared from Ph3TeCl and potassium salts of the corresponding anions. Upon recrystallization of 4 from concentrated nitric acid, K2[PtCl6] and (Ph3Te)(NO3)·HNO3 (5) were obtained. The crystal structures of 1–3 and 5 are reported. Compounds 1 and 2 are isostructural. They are triclinic, P , Z=2 (the asymmetric unit contains two formula units). Compound 1: a=10.7535(2), b=17.2060(1), c=21.4700(3) Å, =78.9731(7), β=77.8650(4), γ=78.8369(4)°. Compound 2: a=10.7484(2), b=17.1955(2), c=21.4744(2) Å, =78.834(1), β=77.649(1), γ=78.781(1)°. Compound 3 is monoclinic, P21/c, Z=4, a=8.432(2), b=14.037(3), c=17.306(3) Å, β=93.70(3)°. Compound 5 is monoclinic. P21/n, Z=4, a=9.572(2), b=14.050(3), c=13.556(3) Å, β=90.76(3)°. The primary bonding in the Ph3Te+ cation in each salt is a trigonal AX3E pyramid with Te---C bond lengths in the range 2.095(8)–2.14(2) Å and the bond angles 94.1(6)–100.9(5)°. The weak TeCl (1–3) and TeO (5) secondary interactions expand the coordination sphere. In 1 and 2 the cation shows a trigonal bipyramidal AX3YE coordination with one primary Te---C bond and the shortest secondary TeCl contact in axial positions and the two other Te---C bonds and the lone-pair in equatorial positions. The cation in 3 shows a distorted octahedral AX3Y3E environment and that in 5 is a more complex AX3Y3Y′2 arrangement. In both latter salts the structure is a complicated three-dimensional network of cations and anions.  相似文献   

14.
The crystalline Br, I and CH3 derivatives of 9-hydroxyphenalenone (5X–9HPO) and their deuteroxy analogues (5X–9DPO) are treated by application of the Ising model approaches. The molecular field parameter (J0) as well as the tunneling parameter (Ω) are evaluated for each material with the help of different quantum chemistry procedures. As our evaluations show both relations Ω(D)/J0 and Ω(H)/J0 are less than unity in the case of 5CH3–9(H/D)PO derivatives that leads to an appearance of the low-temperature ordered (anti-ferroelectric) phase. A relatively small Ω(D)/J0 (0.2–0.4) values derived in the case of 5Br– and 5I–9DPO imply the tendency to transition into the similar phase in these species. At the same time a rather large values of Ω(H)/J0 (0.9–1.7) derived in the case of their hydroxy analogues speak in favor of their quantum paraelectric behavior. The obtained theoretical estimations and conclusions are compared with the available experimental data.  相似文献   

15.
The adsorption kinetics of CmE8 (m=10, 12, and 14) at an air–water interface are investigated. A pendant bubble is formed in aqueous surfactant solution and allowed to attain equilibrium. The bubble is then impulsively expanded or compressed with some change of area large enough to appreciably deplete or enrich the surface concentration and change the surface tension. The surfactant is then allowed to re-equilibrate. The surface tension evolution during this process is measured using video images of the pendant drop. The surface tension evolution is compared to mass transfer arguments. First, the re-equilibration of interfaces laden with C14E8 are studied. For compressed interfaces, surfactant must desorb to restore equilibrium. The surface tension rises more slowly than predicted by a diffusion-controlled evolution, implying that the re-equilibration is mixed diffusive-kinetic controlled. By analyzing the surface tension evolution in terms of a mixed kinetic-diffusive model, values for the kinetic constants for adsorption and desorption are found. These results are compared to those obtained previously for CmE8 (m=10 and 12). For all of these molecules, the adsorption rate constant is similar (β1=5.6±1.0×10−6 cm3 (mol s)−1). However, the desorption rate constant (1) varies strongly. Increasing m by 2 lowers the desorption rate constant 1 by nearly a factor of 15. This is consistent with an increased resistance to re-immersion into water with the length of a hydrocarbon chain.  相似文献   

16.
Small angle X-ray scattering (SAXS) is measured for the lamellar phase in aqueous systems of 1-o-β-3,7-dimethyoctyl-D-glucopyranoside (β-Glc(Ger)), which has recently been prepared by us, 1-o-β-decyl-D-glucopyranoside (β-GlcC10), and 1-o-β-octyl-D-glucopyranoside (β-GlcC8). The repeat distance d obtained from the position of the diffraction peak does not follow the swelling law d = 2δhc/hc, where δhc and hc are the thickness and the volume fraction of the hydrophobic layer, respectively. This may result from the fact that δhc increases and, equivalently, the surface area per surfactant molecule (as) decreases with increasing concentration. So we calculate δhc and as from the observed d value at each concentration using the above swelling law. The half-thickness δhc increases in the order β-GlcC8 < β-Glc(Ger) < β-GlcC10 at a fixed concentration. On the other hand, the data on as for β-GlcC10 and β-GlcC8 lie on the same line and the data for β-Glc(Ger) lies above this line. These results suggest that the cross-sectional area of the geranyl chain is larger than that of the glucose headgroup. Existence of water filled defects in bilayer sheets is also discussed based on the SAXS pattern and the concentration dependence of d.  相似文献   

17.
Dipalmitoyl phosphatidylcholine (DPPC) monolayers were characterised by surface pressure/area isotherms (π/A) and surface dilational rheological parameters at temperatures 20–40°C. The methods used were the Langmuir trough and the pendant drop micro-film balance. The latter allows accurate measurements at higher temperatures and transient drop deformation. Stable DPPC monolayers were found only for low surface pressures, π<15 mN m−1. At higher monolayer compression π decreases over a long time, mainly caused by molecular rearrangement processes in the monolayer starting in the coexisting region. At π>25 mN m−1 and 20°C relaxation experiments give evident of rupturing, brittle monolayer structures. At higher temperatures the monolayers became more fluid-like. π/A-isotherms determined by using both methods principally agree with each other, but show also remarkable differences, which cannot be explained so far satisfactory. Transient drop relaxation experiments were analysed for the short time range (600 s). At 20°C the dilational modulus (r) and the surface dilational viscosity (ξr) passes a stationary maximum at 0.54 nm2 molecule−1 and increase strongly at higher surface coverage, thus indicating crystalline monolayer structure. Increasing temperature from 20 to 30°C causes a rapid decrease of r and ξr and a shift of the stationary maximum to lower surface coverage. No evidence for crystalline structure is found. Further increase of temperature causes r and ξr increase again. This increase is caused by a rising relaxation time, while the elasticity does not change in the same manner. Such intermediate decrease of r and ξr in the range 30–40°C appears to be unusual and can be interpreted as a consequence of strong DPPC interactions and strongly pronounced retardation of monolayer deformation. The study is discussed in connection to the physiology of breathing. For pulmonary surfactants the observed behaviour seems to be understandable. It is however interesting that such complex behaviour is observed for monolayers consisting of DPPC only.  相似文献   

18.
Synthesis, structure, spectroscopy and thermal properties of complex [Co(NCS)2(hmt)2(H2O)2][Co(NCS)2(H2O)4] (H2O) (I), assembled by hexamethylenetetramine and octahedral Co(II) metal ions, are reported. Crystal data for I: Fw 387.34, a=9.020(8), b=12.887(9), c=7.95(1) Å, =96.73(4), β=115.36(5), γ=94.16(4)°, V=820(1) Å3, Z=2, space group=P−1, T=173 K, λ(Mo-K)=0.71070 Å, ρcalc=1.718567 g cm−3, μ=17.44 cm−1, R=0.088, Rw=0.148. An interesting two-dimensional network is assembled via hydrogen bonds through coordinated and free water molecules. The d–d transition energy levels of Co(II) ion are determined by UV–vis spectroscopy and calculated by ligand field theory. The calculated results agree well with experiment ones.  相似文献   

19.
林宏艳  田原  王青林  曾凌  刘国成  赵延玉 《应用化学》2018,35(11):1372-1377
选择配体N,N'-双(3-吡啶)丙二酰胺(3-bpma)、1,4-对苯二乙酸(H2pda)和硝酸锌在水热条件下,自组装制备了一个基于双螺旋链的三维超分子锌配合物[Zn(3-bpma)(pda)]n(1),并通过红外光谱、元素分析、热重分析和X射线单晶衍射分析进行了晶体结构表征。 单晶结构分析表明标题锌配合物是正交晶系,Pna21空间群,晶胞参数a=1.62512(11) nm,b=1.15947(8) nm,c=1.19282(8) nm,α=90°,β=90°,γ=90°,V=2.2476(3) nm3,Mr=513.80,Dc=1.518 g/cm3,Z=4,F(000)=1056,R1=0.0381,wR2=0.0669。 金属锌离子被两种桥连配体3-bpma和pda连接形成一种一维双螺旋链状结构,相邻的链间进一步通过氢键作用拓展成为三维超分子网络结构。 标题锌配合物具有强荧光发射特性,而且其对不同的有机溶剂分子和金属离子有显著的荧光传感特性,可以作为检测硝基苯的高灵敏性荧光传感材料。 CCDC:1811967  相似文献   

20.
三环己基氢氧化锡与L-扁桃酸(物质的量比1:1)在苯和乙醇混合溶剂中反应合成了三环己基锡L-扁桃酸酯。 经X射线衍射方法测定了其晶体结构,配合物属斜方晶系,空间群为P212121,晶体学参数a=0.80825(4) nm,b=1.77151(8) nm,c=1.8385(2) nm,α=β=γ=90°,V=2.6324(2) nm3,Z=4,Dc=1.310 g/nm3,μ(Mo)=9.92 cm-1,F(000)=1080,R1=0.0472,wR2=0.1341。 中心锡原子与环己基碳原子和氧原子构成畸型四面体。 对其结构进行量子化学从头计算,探讨了配合物的稳定性、分子轨道能量以及一些前沿分子轨道的组成特征。 研究了配合物的热稳定性、电化学性能、圆二色谱和体外抗癌活性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号