首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Solution-processed In(2)O(3) thin-film transistors (TFTs) were fabricated by a spin-coating process using a metal halide precursor, InCl(3), dissolved in acetonitrile. A thin and uniform film can be controlled and formed by adding ethylene glycol. The synthesized In(2)O(3) thin films were annealed at various temperatures ranging from 200 to 600 °C in air or in an O(2)/O(3) atmospheric environment. The TFTs annealed at 500 °C under air exhibited a high field-effect mobility of 55.26 cm(2) V(-1) s(-1) and an I(on)/I(off) current ratio of 10(7). In(2)O(3) TFTs annealed under an O(2)/O(3) atmosphere at temperatures from 200 to 300 °C exhibited excellent n-type transistor behaviors with field-effect mobilities of 0.85-22.14 cm(2) V(-1) s(-1) and I(on)/I(off) ratios of 10(5)-10(6). The annealing atmosphere of O(2)/O(3) elevates solution-processed In(2)O(3) TFTs to higher performance at lower processing temperature.  相似文献   

2.
Structural and electronic criteria for ambient stability in n-type organic materials for organic field-effect transistors (OFETs) are investigated by systematically varying LUMO energetics and molecular substituents of arylene diimide-based materials. Six OFETs on n+-Si/SiO2 substrates exhibit OFET response parameters as follows: N,N'-bis(n-octyl)perylene-3,4:9,10-bis(dicarboximide) (PDI-8): mu = 0.32 cm2 V(-1) s(-1), Vth = 55 V, I(on)/I(off) = 10(5); N,N'-bis(n-octyl)-1,7- and N,N'-bis(n-octyl)-1,6-dibromoperylene-3,4:9,10-bis(dicarboximide) (PDI-8Br2): mu = 3 x 10(-5) cm2 V(-1) s(-1), Vth = 62 V, I(on)/I(off) = 10(3); N,N'-bis(n-octyl)-1,6,7,12-tetrachloroperylene-3,4:9,10-bis(dicarboximide) (PDI-8Cl4): mu = 4 x 10(-3) cm2 V(-1) (s-1), Vth = 37 V, I(on)/I(off) = 10(4); N,N'-bis(n-octyl)-2-cyanonaphthalene-1,4,5,8-bis(dicarboximide) (NDI-8CN): mu = 4.7 x 10(-3) cm2 V(-1) s(-1), Vth = 28, I(on)/I(off) = 10(5); N,N'-bis(n-octyl)-1,7- and N,N'-bis(n-octyl)-1,6-dicyanoperylene-3,4:9,10-bis(dicarboximide) (PDI-8CN2): mu = 0.13 cm2 V(-1) s(-1), Vth = -14 V, I(on)/I(off) = 10(3); and N,N'-bis(n-octyl)-2,6-dicyanonaphthalene-1,4,5,8-bis(dicarboximide) (NDI-8CN2): mu = 0.15 cm2 V(-1) s(-1), Vth = -37 V, I(on)/I(off) = 10(2). Analysis of the molecular geometries and energetics in these materials reveals a correlation between electron mobility and substituent-induced arylene core distortion, while Vth and I(off) are generally affected by LUMO energetics. Our findings also indicate that resistance to ambient charge carrier trapping observed in films of N-(n-octyl)arylene diimides occurs at a molecular reduction potential more positive than approximately -0.1 V (vs SCE). OFET threshold voltage shifts between vacuum and ambient atmosphere operation suggest that, at E(red1) < -0.1 V, the interfacial trap density increases by greater than approximately 1 x 10(13) cm(-2), while, for semiconductors with E(red1) > -0.1 V, the trap density increase is negligible. OFETs fabricated with the present n-type materials having E(red1) > -0.1 V operate at conventional gate biases with minimal hysteresis in air. This reduction potential corresponds to an overpotential for the reaction of the charge carriers with O2 of approximately 0.6 V. N,N'-1H,1H-Perfluorobutyl derivatives of the perylene-based semiconductors were also synthesized and used to fabricate OFETs, resulting in air-stable devices for all fluorocarbon-substituted materials, despite generally having E(red1) < -0.1 V. This behavior is consistent with a fluorocarbon-based O2 barrier mechanism. OFET cycling measurements in air for dicyanated vs fluorinated materials demonstrate that energetic stabilization of the charge carriers results in greater device longevity in comparison to the OFET degradation observed in air-stable semiconductors with fluorocarbon barriers.  相似文献   

3.
A new pyrene-cored π-conjugated molecule has been synthesized through Sonogashira coupling reaction. The single-crystalline microribbon-based FET exhibited the highest mobility of 0.7 cm(2) V(-1) s(-1) (I(on)/I(off) > 10(6)). Single-crystalline microribbons were employed to operate in an organic phototransistor (OPT) under very low light intensity (I = 5.6 μW cm(-2)).  相似文献   

4.
A novel diketopyrrolopyrrole-based π-conjugated copolymer P(DPP-alt-DTBSe), 5, and a known copolymer P(DPP-alt-QT), 4, have been synthesized in 80-90% yield using the Stille coupling reaction. The molecular weights of 4 and 5 are 58,781 and 19,271 g/mol, respectively, with polydispersity values of 3.25-3.35. A relatively small band gap of 1.32-1.39 eV and excellent solubility in organic solvents were achieved in the two polymers. Thin-film transistors made of 5 exhibit outstanding performance (e.g., μ > 1.0-1.5 cm(2)·V(-1)·s(-1), I(on)/I(off) > 10(5)-10(6)) with a conventional n-octyltrichlorosilane-SiO(2) gate dielectric.  相似文献   

5.
A simple nickel bis(dithiolene) complex has been developed as an excellent n-type molecular semiconductor for FETs, with an electron mobility of 0.11 cm(2) V(-1) s(-1) and an on/off ratio of 2 × 10(6) despite its small π-conjugated system. Good FET stability in ambient conditions has also been observed.  相似文献   

6.
We report the synthesis, characterization, redox behavior, and n‐channel organic field‐effect (OFET) characteristics of a new class of thieno[3,2‐b]thiophene‐diketopyrrolopyrrole‐based quinoidal small molecules 3 and 4 . Under ambient atmosphere, solution‐processed thin‐film transistors based on 3 and 4 exhibit maximum electron mobilities up to 0.22 and 0.16 cm2 V?1 s?1, respectively, with on‐off current ratios (Ion/Ioff) of more than than 106. Cyclic voltammetry analysis showed that this class of quinoidal derivatives exhibited excellent reversible two‐stage reduction behavior. This property was further investigated by a stepwise reductive titration of 4 , in which sequential reduction to the radical anion and then the dianion were observed.  相似文献   

7.
Ammonium thiocyanate (NH(4)SCN) is introduced to exchange the long, insulating ligands used in colloidal nanocrystal (NC) synthesis. The short, air-stable, environmentally benign thiocyanate ligand electrostatically stabilizes a variety of semiconductor and metallic NCs in polar solvents, allowing solution-based deposition of NCs into thin-film NC solids. NH(4)SCN is also effective in replacing ligands on NCs after their assembly into the solid state. The spectroscopic properties of this ligand provide unprecedented insight into the chemical and electronic nature of the surface of the NCs. Spectra indicate that the thiocyanate binds to metal sites on the NC surface and is sensitive to atom type and NC surface charge. The short, thiocyanate ligand gives rise to significantly enhanced electronic coupling between NCs as evidenced by large bathochromic shifts in the absorption spectra of CdSe and CdTe NC thin films and by conductivities as high as (2 ± 0.7) × 10(3) Ω(-1) cm(-1) for Au NC thin films deposited from solution. NH(4)SCN treatment of PbTe NC films increases the conductivity by 10(13), allowing the first Hall measurements of nonsintered NC solids, with Hall effect mobilities of 2.8 ± 0.7 cm(2)/(V·s). Thiocyanate-capped CdSe NC thin films form photodetectors exhibiting sensitive photoconductivity of 10(-5) Ω(-1) cm(-1) under 30 mW/cm(2) of 488 nm illumination with I(photo)/I(dark) > 10(3) and form n-channel thin-film transistors with electron mobilities of 1.5 ± 0.7 cm(2)/(V·s), a current modulation of >10(6), and a subthreshold swing of 0.73 V/decade.  相似文献   

8.
We here report naphtho[2,1-b:6,5-b']difuran derivatives as new p-type semiconductors that achieve hole mobilities of up to 3.6 cm(2) V(-1) s(-1) along with high I(on)/I(off) ratios in solution-processed single-crystal organic field-effect transistors. These features originate from the dense crystal packing and the resulting large intermolecular π-orbital overlap as well as from the small reorganization energy, all of which originate from the small radius of an oxygen atom.  相似文献   

9.
This paper describes an experimentally simple system for measuring rates of electron transport across organic thin films having a range of molecular structures. The system uses a metal--insulator--metal junction based on self-assembled monolayers (SAMs); it is particularly easy to assemble. The junction consists of a SAM supported on a silver film (Ag-SAM(1)) in contact with a second SAM supported on the surface of a drop of mercury (Hg-SAM(2))--that is, a Ag-SAM(1)SAM(2)-Hg junction. SAM(1) and SAM(2) can be derived from the same or different thiols. The current that flowed across junctions with SAMs of aliphatic thiols or aromatic thiols on Ag and a SAM of hexadecane thiol on Hg depended both on the molecular structure and on the thickness of the SAM on Ag: the current density at a bias of 0.5 V ranged from 2 x 10(-10) A/cm(2) for HS(CH(2))(15)CH(3) on Ag to 1 x 10(-6) A/cm(2) for HS(CH(2))(7)CH(3) on Ag, and from 3 x 10(-6) A/cm(2) for HS(Ph)(3)H (Ph = 1,4-C(6)H(4)) on Ag to 7 x 10(-4) A/cm(2) for HSPhH on Ag. The current density increased roughly linearly with the area of contact between SAM(1) and SAM(2), and it was not different between Ag films that were 100 or 200 nm thick. The current--voltage curves were symmetrical around V = 0. The current density decreased with increasing distance between the electrodes according to the relation I = I(0)e(-beta d(Ag,Hg)), where d(Ag,Hg) is the distance between the electrodes, and beta is the structure-dependent attenuation factor for the molecules making up SAM(1). At an applied potential of 0.5 V, beta was 0.87 +/- 0.1 A(-1) for alkanethiols, 0.61 +/- 0.1 A(-1) for oligophenylene thiols, and 0.67 +/- 0.1 A(-1) for benzylic derivatives of oligophenylene thiols. The values of beta did not depend significantly on applied potential over the range of 0.1 to 1 V. These junctions provide a test bed with which to screen the intrinsic electrical properties of SAMs made up of molecules with different structures; information obtained using these junctions will be useful in correlating molecular structure and rates of electron transport.  相似文献   

10.
W Zhang  X Sun  P Xia  J Huang  G Yu  MS Wong  Y Liu  D Zhu 《Organic letters》2012,14(17):4382-4385
Two tetrabrominated intermediates obtained by bromination of naphthodithiophene in different solvents were used to construct novel highly π-extended butterfly-shaped heteroarenes 1-6, containing either an 8- or 10-fused ring. The solution-processed organic field-effect transistors based on compound 1 exhibited promising device performance with a hole mobility of 0.072 cm(2) V(-1) s(-1) and a current on/off ratio of 10(6) under ambient atmosphere.  相似文献   

11.
Three novel diketopyrrolopyrrole (DPP) based small molecules have been synthesized and characterized in terms of their chemical-physical, electrochemical and electrical properties. All the molecules consist of a central DPP electron acceptor core symmetrically functionalized with donor bi-thienyl moieties and flanked in the terminal positions by three different auxiliary electron-acceptor groups. This kind of molecular structure, characterized by an alternation of electron acceptor and donor groups, was purposely designed to provide a significant absorption at the longer wavelengths of the visible spectrum: when analysed as thin films, in fact, the dyes absorb well over 800 nm and exhibit a narrow optical bandgap down to 1.28 eV. A detailed DFT analysis provides useful information on the electronic structure of the dyes and on the features of the main optical transitions. Organic field-effect transistors (OFETs) have been fabricated by depositing the DPP dyes as active layers from solution: the different end-functionalization of the dyes had an effect on the charge-transport properties with two of the dyes acting as n-type semiconductors (electron mobility up to 4.4 ⋅ 10−2 cm2/V ⋅ s) and the third one as a p-type semiconductor (hole mobility up to 2.3 ⋅ 10−3 cm2/V ⋅ s). Interestingly, well-balanced ambipolar transistors were achieved by blending the most performant n-type and p-type dyes with hole and electron mobility in the order of 10−3 cm2/V ⋅ s  相似文献   

12.
A kinetic study of the reactions of ground state V, Fe, and Co with SO2 is reported. V, Fe, and Co were produced by the 248 nm photodissociation of VCl4, ferrocene, and Co(C5H5)(CO)2, respectively, and were detected by laser-induced fluorescence. V + SO2 proceeds by an abstraction reaction with rate constants given by k=(2.33 +/- 0.57)x 10(-10) exp[-(1.14 +/- 0.19) kcal mol(-1)/RT] cm3 molecule(-1) s(-1) over the temperature range 296-571 K. Fe + SO2 was studied in the N2 buffer range of 10-185 Torr between 294 and 498 K. The limiting, low-pressure third-order rate constants are given by k(0)=(3.45 +/- 1.19)x 10(-30) exp[-(2.81 +/- 0.24) kcal mol(-1)/RT] cm6 molecule(-2) s(-1). Co + SO2 was studied in the CO2 buffer range of 5-40 Torr between 294 and 498 K. This reaction is independent of temperature over the indicated range and has a third-order rate constant of k0=(5.23 +/- 0.28)x 10(-31) cm6 molecule(-2) s(-1). Results of this work are compared to previous work on the Sc, Ti, Cr, Mn, and Ni + SO2 systems. The reaction efficiencies for the abstraction reactions depend on the ionization energies of the transition metal atoms and on the reaction exothermicities, and the reaction efficiencies of the association reactions are strongly dependent on the energies needed to promote an electron from a 4s2 configuration to a 4s1 configuration.  相似文献   

13.
A π-conjugated polyazine containing diketopyrrolopyrrole (DPP) moiety, PDBTAZ, is synthesized through a simple condensation polymerization. PDBTAZ is found to be a high-performance ambipolar semiconductor in organic thin film transistors (OTFTs), showing an electron mobility of up to 0.41 cm(2) V(-1) s(-1) and a hole mobility of up to 0.36 cm(2) V(-1) s(-1).  相似文献   

14.
The synthesis, characterization, and field-effect transistor (FET) properties of new indolo[3,2-b]carbazoles are described. In particular, an extensive characterization of their crystal structures has revealed the importance of the nature of the side chains (alkyl, phenyl, thienyl substituents) on their solid-state organization. These organic materials have exhibited p-type FET behavior with hole mobilities as high as 0.2 cm2 V(-1) s(-1) with an on/off current ratio higher than 10(6). Best results were obtained with phenyl-substituted indolo[3,2-b]carbazoles since the presence of phenyl substituents seems to allow efficient overlap between the oligomeric molecules. More importantly, FET properties were kept constant during several months in air.  相似文献   

15.
We investigated two different (2,7-dialkyl-[1]benzothieno[3,2-b][1]benzothiophenes; C(n)-BTBT-C(n), where n = 12 or 13) semiconductors in low-voltage operating thin-film transistors. By choosing functional molecules in nanoscaled hybrid dielectric layers, we were able to tune the surface energy and improve device characteristics, such as leakage current and hysteresis. The dipolar nature of the self-assembled molecules led to a shift in the threshold voltage. All devices exhibited high charge carrier mobilities of 0.6-7.0 cm(2) V(-1) s(-1). The thin-film morphology of BTBT was studied by means of atomic force microscopy (AFM), presented a dependency upon the surface energy of the self-assembled monolayer (SAM) hybrid dielectrics but not upon the device performance. The use of C(13)-BTBT-C(13) on hybrid dielectrics of AlO(x) and a F(15)C(18)-phosphonic acid monolayer led to devices with a hole mobility of 1.9 cm(2) V(-1) s(-1) at 3 V, on/off ratio of 10(5), small device-device variation of mobility, and a threshold voltage of only -0.9 V, thus providing excellent characteristics for further integration.  相似文献   

16.
A new diketopyrrolopyrrole derivative 1 exhibits excellent hole mobilities of 0.7 cm(2) V(-1) s(-1) and a current on/off ratio of 10(6) under ambient conditions in bottom-gate, top-contact organic thin film transistors (OTFTs) fabricated by vacuum deposition.  相似文献   

17.
Developing new high-mobility polymeric semiconductors with good processability and excellent device environmental stability is essential for organic electronics. We report the synthesis, characterization, manipulation of charge carrier polarity, and device air stability of a new series of bithiophene-imide (BTI)-based polymers for organic field-effect transistors (OFETs). By increasing the conjugation length of the donor comonomer unit from monothiophene (P1) to bithiophene (P2) to tetrathiophene (P3), the electron transport capacity decreases while the hole transport capacity increases. Compared to the BTI homopolymer P(BTimR) having an electron mobility of 10(-2) cm(2) V(-1) s(-1), copolymer P1 is ambipolar with balanced hole and electron mobilities of ~10(-4) cm(2) V(-1) s(-1), while P2 and P3 exhibit hole mobilities of ~10(-3) and ~10(-2) cm(2) V(-1) s(-1), respectively. The influence of P(BTimR) homopolymer M(n) on film morphology and device performance was also investigated. The high M(n) batch P(BTimR)-H affords more crystalline film microstructures; hence, 3× increased electron mobility (0.038 cm(2) V(-1) s(-1)) over the low M(n) one P(BTimR)-L (0.011 cm(2) V(-1) s(-1)). In a top-gate/bottom-contact OFET architecture, P(BTimR)-H achieves a high electron mobility of 0.14 cm(2) V(-1) s(-1), only slightly lower than that of state-of-the-art n-type polymer semiconductors. However, the high-lying P(BTimR)-H LUMO results in minimal electron transport on exposure to ambient. Copolymer P3 exhibits a hole mobility approaching 0.1 cm(2) V(-1) s(-1) in top-gate OFETs, comparable to or slightly lower than current state-of-the-art p-type polymer semiconductors (0.1-0.6 cm(2) V(-1) s(-1)). Although BTI building block incorporation does not enable air-stable n-type OFET performance for P(BTimR) or P1, it significantly increases the OFET air stability for p-type P2 and P3. Bottom-gate/top-contact and top-gate/bottom-contact P2 and P3 OFETs exhibit excellent stability in the ambient. Thus, P2 and P3 OFET hole mobilities are almost unchanged after 200 days under ambient, which is attributed to their low-lying HOMOs (>0.2 eV lower than that of P3HT), induced by the strong BTI electron-withdrawing capacity. Complementary inverters were fabricated by inkjet patterning of P(BTimR)-H (n-type) and P3b (p-type).  相似文献   

18.
A novel concept for electroosmotic flow (EOF) control in a microfluidic chip is presented by using a self-assembled monolayer as the insulator of a flow field-effect transistor. Bidirectional EOF control with mobility values of 3.4 × 10(-4) and -3.1 × 10(-4) cm(2)/V s can be attained, corresponding to the applied gate voltage at -0.8 and 0.8 V, respectively, without the addition of buffer additives. A relatively high control factor (approximately 400 × 10(-6) cm(2)/V(2) s) can be obtained. The method presented in this study offers a simple strategy to control the EOF.  相似文献   

19.
Four new solution-processible small-molecular platinum(II)-bis(aryleneethynylene) complexes consisting of benzothiadiazole as the electron acceptor and triphenylamine and/or thiophene as the electron donor were conveniently synthesized and characterized by physicochemical and computational methods, and utilized as the electron-donor materials in the fabrication of solution-processed bulk heterojunction (BHJ) solar cells. The effect of different electron-donor groups in these small molecules on the optoelectronic and photovoltaic properties was also examined. The optical and time-dependent density functional theory studies showed that the incorporation of stronger electron-donor groups significantly enhanced the solar-absorption abilities of the complexes. These molecular complexes can serve as good electron donors for fabricating BHJ devices by blending them with the [6,6]-phenyl-C(71)-butyric acid methyl ester (PC(70)BM) as the electron acceptor. The best power conversion efficiency of 2.37% was achieved with the open-circuit voltage of 0.83 V, short-circuit current density of 7.10 mA cm(-2) and fill factor of 0.40 under illumination of an AM 1.5 solar-cell simulator. The spin-coated thin films showed p-channel field-effect charge transport with hole mobilities of up to 2.4×10(-4) cm(2) V(-1) s(-1) for these molecules. The present work illuminates the potential of well-defined organometallic complexes in developing light-harvesting small molecules for efficient power generation in organic photovoltaics implementation.  相似文献   

20.
Tri-iodide transport in a polymer gel electrolyte embedded in nanoporous TiO(2) networks and its diffusion limits are investigated by means of current-voltage (I-V) characteristics of simple Pt-gel-Pt sandwich devices with a thin porous TiO(2) layer sintered directly onto one of the Pt electrodes. At voltages between 0.2 and 0.7 V, the I-V curves of such devices show the typical plateau of diffusion-limited redox reactions, in this case I(-)/I(3) (-), at the platinum electrodes. From the dependence of the limiting current density on layer thickness, the diffusion constants D(bulk) and D(p,eff) of tri-iodide in the bulk polymer gel and through a polymer gel penetrated TiO(2) network, respectively, have been found to be D(bulk)=3.2(+/-0.2)x10(-6) cm(2)/s and D(p,eff)=1.5(+/-0.1)x10(-6) cm(2)/s. Temperature-dependent measurements show diffusion in the gel to be activated by about 0.16 eV. The results are discussed in comparison to diffusion in liquid electrolytes as well as with respect to the implications for dye-sensitized solar cell devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号