首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 570 毫秒
1.
The first examples of iridium(III) complexes containing a terdentate, N--C--N-coordinated 1,3-di(2-pyridyl)benzene derivative, cyclometalated at C2 of the benzene ring, are reported. This mode of binding becomes significant only if competitive cyclometalation at C4/C6 is blocked, and the ligand 1,3-di(2-pyridyl)-4,6-dimethylbenzene (dpyxH) has been prepared to achieve this condition. The charge-neutral complex [Ir(dpyx)(dppy)], 2, (dppyH(2) = 2,6-diphenylpyridine) has been isolated, containing dpyx and dppy bound to the metal through one and two carbon atoms, respectively. A terpyridyl analogue, [Ir(dpyx)(ttpy)](PF(6))(2), 3, (ttpy = 4'-tolylterpyridine) has also been prepared and its X-ray crystal structure determined, confirming the N--C--N binding mode of dpyx. Complex 2 emits strongly in degassed solution at 295 K (lambda(max) = 585 nm, phi = 0.21, tau = 3900 ns, in CH(3)CN). In solution, the excited state can also undergo photodissociation, through cleavage of one of the Ir-C(dppy) bonds.  相似文献   

2.
Novel mixed-ligand Ir(III) complexes, [Ir(L)(NwedgeC)X]n+ (L = N/\C/\N or N/\N/\N; X = Cl, Br, I, CN, CH3CN, or -CCPh; n = 0 or 1), were synthesized, where N/\CwedgeN = bis(N-methylbenzimidazolyl)benzene (Mebib) and bis(N-phenylbenzimidazolyl)benzene (Phbib), N/\N/\N = bis(N-methylbenzimidazolyl)pyridine (Mebip), and N/\C = phenylpyridine (ppy) derivatives. The X-ray crystal structures of [Ir(Phbib)(ppy)Cl] and [Ir(Mebib)(mppy)Cl] [mppy = 5-methyl-2-(2'-pyridyl)phenyl] indicate that the nitrogen atom of the ppy ligand is located trans to the coordinating carbon atom in Me- or Phbib, while the coordinating carbon atom in ppy occupies the trans position of Cl. [Ir(Mebip)(ppy)Cl]+ showed a quasireversible Ir(III/IV) oxidation wave at +1.05 V, while the Ir complexes, [Ir(Mebib)(ppy)Cl], were oxidized at +0.42 V versus Fc/Fc+. The introduction of an Ir-C bond in [Ir(Mebib)(ppy)Cl] induces a large potential shift of 0.63 V in a negative direction. Further, the oxidation potential of [Ir(Mebib)(Rppy)X] was altered by the substitution of R, R', and X groups. Compared to the oxidation potential, the first reduction potential revealed an almost constant value at -2.36 to -2.46 V for [Ir(L)(ppy)Cl] (L = Mebib and Phbib) and -1.52 V for [Ir(Mebip)(ppy)Cl. The UV-vis spectra of [Ir(Mebib)(R-ppy)X] show a clear singlet metal-to-ligand charge-transfer transition around 407 approximately 425 nm and a triplet metal-to-ligand charge-transfer transition at 498 approximately 523 nm. [Ir(Mebip)(ppy)Cl]+ emits at 610 nm with a luminescent quantum yield of Phi = 0.16 at room temperature. The phosphorescence of [Ir(Mebib)(ppy)X] was observed at 526 nm for X = CN and 555 nm for X = Cl with the high luminescent quantum yields, Phi = 0.77 approximately 0.86, at room temperature. [Ir(Phbib)(ppy)Cl] shows the emission at 559 nm with a luminescent quantum yield of Phi = 0.95, which is an unprecedentedly high value compared to those of other emissive metal complexes. Compared to the luminescent quantum yields of the Ir(ppy)2(L) derivatives and [Ir(Mebip)(ppy)Cl]+, the neutral Ir complexes, [Ir(L)(R-ppy)X] (L = Me- or Phbib), reveal very high quantum yields and large radiative rate constants (kr) ranging from 3.4 x 10(5) to 5.5 x 10(5) s(-1). The density functional theory calculation suggests that these Ir complexes possess dominantly metal-to-ligand charge-transfer and halide-to-ligand charge-transfer excited states. The mechanism for a high phosphorescence yield in [Ir(bib)(ppy)X] is discussed herein from the perspective of the theoretical consideration of radiative rate constants using perturbation theory and a one-center spin-orbit coupling approximation.  相似文献   

3.
A series of novel emissive Ir(III) complexes having the coordination environments of [Ir(N--N--N)2]3+, [Ir(N--N--N)(N--N)Cl]2+, and [Ir(N--N--N)(N--C--N)]2+ with 2,6-bis(1-methyl-benzimidazol-2-yl)pyridine (L1, N--N--N), 1,3-bis(1-methyl-benzimidazol-2-yl)benzene (L2H, N--C--N), 4'-(4-methylphenyl)-2,2':6',2' '-terpyridine (ttpy, N--N--N), and 2,2'-bipyridine (bpy, N--N) have been synthesized and their photophysical and electrochemical properties studied. The Ir(III) complexes exhibited phosphorescent emissions in the 500-600 nm region, with lifetimes ranging from approximately 1-10 micros at 295 K. Analysis of the 0-0 energies and the redox potentials indicated that the lowest excited state of [Ir(L1)(L2)]2+ possessed the highest contribution of 3MLCT (MLCT = metal-to-ligand charge transfer) among the Ir(III) complexes, reflecting the sigma-donating ability of the tridentate ligand, ttpy < L1 < L2. The emission quantum yields (phi) of the Ir(III) complexes ranged from 0.037 to 0.19, and the highest phi value (0.19) was obtained for [Ir(L1)(bpy)Cl]2+. Radiative rate constants (k(r)) were 1.2 x 10(4) s(-1) for [Ir(ttpy)2]3+, 3.7 x 10(4) s(-1) for [Ir(L1)(bpy)Cl]2+, 3.8 x 10(4) s(-1) for [Ir(ttpy)(bpy)Cl]2+, 3.9 x 10(4) s(-1) for [Ir(L1)2]3+, and 6.6 x 10(4) s(-1) for [Ir(L1)(L2)]2+. The highest radiative rate for [Ir(L1)(L2)]2+ with the highest contribution of 3MLCT could be explained in terms of the singlet-triplet mixing induced by spin-orbit coupling of 5d electrons in the MLCT electronic configurations.  相似文献   

4.
Reaction of 2-(arylazo)phenols with [Ir(PPh(3))(3)Cl] in refluxing ethanol in the presence of a base (NEt(3)) affords complexes of three different types, viz. [Ir(PPh(3))(2)(NO-R)(H)Cl] (R = OCH(3), CH(3), H, Cl and NO(2)), [Ir(PPh(3))(2)(NO-R)(H)(2)] and [Ir(PPh(3))(2)(CNO-R)(H)]. Structures of the [Ir(PPh(3))(2)(NO-Cl)(H)Cl], [Ir(PPh(3))(2)(NO-Cl)(H)(2)] and [Ir(PPh(3))(2)(CNO-Cl)(H)] complexes have been determined by X-ray crystallography. In the [Ir(PPh(3))(2)(NO-R)(H)Cl] and [Ir(PPh(3))(2)(NO-R)(H)(2)] complexes, the 2-(arylazo)phenolate ligands are coordinated to the metal center as monoanionic bidentate N,O-donors, whereas in the [Ir(PPh(3))(2)(CNO-R)(H)] complexes, they are coordinated to iridium as dianionic tridentate C,N,O-donors. In all three products formed in ethanol, the two PPh(3) ligands are trans. Reaction of 2-(arylazo)phenols with [Ir(PPh(3))(3)Cl] in refluxing toluene in the presence of NEt(3) affords complexes of two types, viz. [Ir(PPh(3))(2)(CNO-R)(H)] and [Ir(PPh(3))(2)(CNO-R)Cl]. Structure of the [Ir(PPh(3))(2)(CNO-Cl)Cl] complex has been determined by X-ray crystallography, and the 2-(arylazo)phenolate ligand is coordinated to the metal center as a dianionic tridentate C,N,O-donor and the two PPh(3) ligands are cis. All of the iridium(III) complexes show intense MLCT transitions in the visible region. Cyclic voltammetry shows an Ir(III)-Ir(IV) oxidation on the positive side of SCE and an Ir(III)-Ir(II) reduction on the negative side for all of the products.  相似文献   

5.
A new family of cationic iridium(III) complexes is reported that contain two cyclometalating terdentate ligands. The complex [Ir(N--C--N-dpyx)(N--N--C-phbpy)]+ (1) contains one N--C--N-coordinating ligand, cyclometalating through the central phenyl ring, and one N--N--C-coordinated ligand, cyclometalated at the peripheral phenyl ring [dpyxH = 1,3-di(2-pyridyl)-4,6-dimethylbenzene; phbpyH = 6-phenyl-2,2'-bipyridine]. This binding mode dictates a mutually cis arrangement of the cyclometalated carbon atoms: the complexes are thus bis-terdentate analogues of the well-known [Ir(N--C-ppy)2(N--N-bpy)]+ family of complexes, which similarly contain a cis-C2N4 coordination environment. The dpyx ligand can be brominated regioselectively at the carbon atom para to the metal under mild conditions. Starting from a modified complex, [Ir(N--C--N-dpyx)(N--N--C-mtbpy-phi-Br)]+ (2), which incorporates a pendent bromophenyl group, a sequential cross-coupling-bromination-cross-coupling strategy can be applied for the stepwise introduction of aryl groups into the ligands, using in situ palladium-catalyzed Suzuki reactions with arylboronic acids [mtbpyH-phi-Br = 4-(p-bromophenyl)-6-(m-tolyl)bipyridine]. Dimetallic complexes 6 and 7 have similarly been prepared by a palladium-catalyzed reaction of complex 2 with 1,4-benzenediboronic acid and 4,4'-biphenyldiboronic acid, respectively. All five monometallic complexes and both dimetallic systems are luminescent in solution, emitting around 630 nm in MeCN at 298 K, with quantum yields in the range of 0.02-0.06, superior to [Ir(ppy)2(bpy)]+. The luminescence, electrochemistry, and singlet-oxygen-sensitizing abilities of the new family of complexes are discussed in the context of the tris-bidentate analogues and related bis-terdentate compounds that contain a trans arrangement of cyclometalated carbon atoms.  相似文献   

6.
Synthetic control of the mutual arrangement of the cyclometalated ligands (C^N) in Ir(III) dimers, [Ir(C^N)(2)Cl](2), and cationic bis-cyclometalated Ir(III) complexes, [Ir(C^N)(2)(L^L)](+) (L^L = neutral ligand), is described for the first time. Using 1-benzyl-4-(2,4-difluorophenyl)-1H-1,2,3-triazole (HdfptrBz) as a cyclometalating ligand, two different Ir(III) dimers, [Ir(dfptrBz)(2)Cl](2), are synthesized depending on the reaction conditions. At 80 °C, the dimer with an unusual mutual cis-C,C and cis-N,N configuration of the C^N ligands is isolated. In contrast, at higher temperature (140 °C), the geometrical isomer with the common cis-C,C and trans-N,N arrangement of the C^N ligand is obtained. In both cases, an asymmetric bridge, formed by a chloro ligand and two adjacent nitrogens of the triazole ring of one of the cyclometalated ligands, is observed. The dimers are cleaved in coordinating solvents to give the solvento complexes [Ir(dfptrBz)(2)Cl(S)] (S = DMSO or acetonitrile), which maintain the C^N arrangement of the parent dimers. Controlling the C^N ligand arrangement in the dimers allows for the preparation of the first example of geometrical isomers of a cationic bis-cyclometalated Ir(III) complex. Thus, N,N-trans-[Ir(dfptrBz)(2)(dmbpy)](+) (dmbpy = 4,4'-dimethyl-2,2'-bipyridine), with cis-C,C and trans-N,N arrangement of the C^N ligands, as well as N,N-cis-[Ir(dfptrBz)(2)(dmbpy)](+), with cis-C,C and cis-N,N C^N ligand orientation, are synthesized and characterized. Interestingly, both isomers show significantly different photophysical and electroluminescent properties, depending on the mutual arrangement of the C^N ligands. Furthermore, quantum chemical calculations give insight into the observed photophysical experimental data.  相似文献   

7.
The synthesis, structure, and photophysical and electrochemical properties of cyclometalated iridium complexes with ancillary cyano and isocyanide ligands are described. In the first synthetic step, cleavage of dichloro-bridged dimers [Ir(N=C)2(mu-Cl)]2 (N=C = 2-phenylpyridine, 2-(2-fluorophenyl)pyridine, and 2-(2,4-difluorophenyl)pyridine) by isocyanide ligands gave monomeric species of the types Ir(N=C)2(RNC)(Cl) (RNC = t-butyl isocyanide, 1,1,3,3-tetramethylbutyl isocyanide, 2-morpholinoethyl isocyanide, and 2,6-dimethylphenyl isocyanide). In turn, the chloride was replaced by cyanide giving Ir(N=C)2(RNC)(CN). The X-ray structures for two of the complexes show that the trans-pyridyl/cis-phenyl geometry of the parent dimer is preserved, with the ancillary ligands positioned trans to the cyclometalated phenyls. The cyano complexes all display strong blue photoluminescence in ambient, deoxygenated solutions with the first lambdamax ranging from 441 to 458 nm, quantum yields spanning 0.60 to 0.75, and luminescent lifetimes of 12.0-21.4 mus. A lack of solvatochromism and highly structured emission indicate that the lowest energy excited state is triplet ligand centered with some admixture of singlet metal-to-ligand charge-transfer character.  相似文献   

8.
Complexes [Ir(Cp*)Cl(n)(NH2Me)(3-n)]X(m) (n = 2, m = 0 (1), n = 1, m = 1, X = Cl (2a), n = 0, m = 2, X = OTf (3)) are obtained by reacting [Ir(Cp*)Cl(mu-Cl)]2 with MeNH2 (1:2 or 1:8) or with [Ag(NH2Me)2]OTf (1:4), respectively. Complex 2b (n = 1, m = 1, X = ClO 4) is obtained from 2a and NaClO4 x H2O. The reaction of 3 with MeC(O)Ph at 80 degrees C gives [Ir(Cp*){C,N-C6H4{C(Me)=N(Me)}-2}(NH2Me)]OTf (4), which in turn reacts with RNC to give [Ir(Cp*){C,N-C6H4{C(Me)=N(Me)}-2}(CNR)]OTf (R = (t)Bu (5), Xy (6)). [Ir(mu-Cl)(COD)]2 reacts with [Ag{N(R)=CMe2}2]X (1:2) to give [Ir{N(R)=CMe2}2(COD)]X (R = H, X = ClO4 (7); R = Me, X = OTf (8)). Complexes [Ir(CO)2(NH=CMe2)2]ClO4 (9) and [IrCl{N(R)=CMe2}(COD)] (R = H (10), Me (11)) are obtained from the appropriate [Ir{N(R)=CMe2}2(COD)]X and CO or Me4NCl, respectively. [Ir(Cp*)Cl(mu-Cl)]2 reacts with [Au(NH=CMe2)(PPh3)]ClO4 (1:2) to give [Ir(Cp*)(mu-Cl)(NH=CMe2)]2(ClO4)2 (12) which in turn reacts with PPh 3 or Me4NCl (1:2) to give [Ir(Cp*)Cl(NH=CMe2)(PPh3)]ClO4 (13) or [Ir(Cp*)Cl2(NH=CMe2)] (14), respectively. Complex 14 hydrolyzes in a CH2Cl2/Et2O solution to give [Ir(Cp*)Cl2(NH3)] (15). The reaction of [Ir(Cp*)Cl(mu-Cl)]2 with [Ag(NH=CMe2)2]ClO4 (1:4) gives [Ir(Cp*)(NH=CMe2)3](ClO4)2 (16a), which reacts with PPNCl (PPN = Ph3=P=N=PPh3) under different reaction conditions to give [Ir(Cp*)(NH=CMe2)3]XY (X = Cl, Y = ClO4 (16b); X = Y = Cl (16c)). Equimolar amounts of 14 and 16a react to give [Ir(Cp*)Cl(NH=CMe2)2]ClO4 (17), which in turn reacts with PPNCl to give [Ir(Cp*)Cl(H-imam)]Cl (R-imam = N,N'-N(R)=C(Me)CH2C(Me)2NHR (18a)]. Complexes [Ir(Cp*)Cl(R-imam)]ClO4 (R = H (18b), Me (19)) are obtained from 18a and AgClO4 or by refluxing 2b in acetone for 7 h, respectively. They react with AgClO4 and the appropriate neutral ligand or with [Ag(NH=CMe2)2]ClO4 to give [Ir(Cp*)(R-imam)L](ClO4)2 (R = H, L = (t)BuNC (20), XyNC (21); R = Me, L = MeCN (22)) or [Ir(Cp*)(H-imam)(NH=CMe2)](ClO4)2 (23a), respectively. The later reacts with PPNCl to give [Ir(Cp*)(H-imam)(NH=CMe2)]Cl(ClO4) (23b). The reaction of 22 with XyNC gives [Ir(Cp*)(Me-imam)(CNXy)](ClO4)2 (24). The structures of complexes 15, 16c and 18b have been solved by X-ray diffraction methods.  相似文献   

9.
The reaction of [Fe(II)(beta-BPMCN)(OTf)2] (1, BPMCN = N,N'-bis(2-pyridylmethyl)-N,N'-dimethyl-trans-1,2-diaminocyclohexane) with tBuOOH at low-temperature yields alkylperoxoiron(III) intermediates 2 in CH2Cl2 and 2-NCMe in CH3CN. At -45 degrees C and above, 2-NCMe converts to a pale green species 3 (lambda(max) = 753 nm, epsilon = 280 M(-1) cm(-1)) in 90% yield, identified as [Fe(IV)(O)(BPMCN)(NCCH3)]2+ by comparison to other nonheme [Fe(IV)(O)(L)]2+ complexes. Below -55 degrees C in CH2Cl2, 2 decays instead to form deep turquoise 4 (lambda(max) = 656, 845 nm; epsilon = 4000, 3600 M(-1) cm(-1)), formulated to be an unprecedented alkylperoxoiron(IV) complex [Fe(IV)(BPMCN)(OH)(OOtBu)]2+ on the basis of M?ssbauer, EXAFS, resonance Raman, NMR, and mass spectral evidence. The reactivity of 1 with tBuOOH in the two solvents reveals an unexpectedly rich iron(IV) chemistry that can be supported by the BPMCN ligand.  相似文献   

10.
The complex [[Ir(mu-Pz)(CNBu(t))(2)](2)] (1) undergoes double protonation reactions with HCl and with HO(2)CCF(3) to give the neutral dihydride complexes [[Ir(mu-Pz)(H)(X)(CNBu(t))(2)](2)] (X = Cl, eta(1)-O(2)CCF(3)), in which the hydride ligands were located trans to the X groups and in the boat of the complexes, both in the solid state and in solution. The complex [[Ir(mu-Pz)(H)(Cl)(CNBu(t))(2)](2)] evolves in solution to the cationic complex [[Ir(mu-Pz)(H)(CNBu(t))(2)](2)(mu-Cl)]Cl. Removal of the anionic chloride by reaction with methyltriflate allows the isolation of the triflate salt [[Ir(mu-Pz)(H)(CNBu(t))(2)](2)(mu-Cl)]OTf. This complex undergoes a metathesis reaction of hydride by chloride in CDCl(3) under exposure to the direct sunlight to give the complex [[Ir(mu-Pz)(Cl)(CNBu(t))(2)](2)(mu-Cl)]OTf. Protonation of both metal centers in [[Ir(mu-Pz)(CO)(2)](2)] with HCl occurs at low temperature, but eventually the mononuclear compound [IrCl(HPz)(CO)(2)] is isolated. The related complex [[Ir(mu-Pz)(CO)(P[OPh](3))](2)] reacts with HCl and with HO(2)CCF(3) to give the neutral Ir(III)/Ir(III) complexes [[Ir(mu-Pz)(H)(X)(CO)(P[OPh](3))](2)], respectively. Both reactions were found to take place stepwise, allowing the isolation of the intermediate monohydrides. They are of different natures, i.e., the metal-metal-bonded Ir(II)/Ir(II) compound [(P[OPh](3))(CO)(Cl)Ir(mu-Pz)(2)Ir(H)(CO)(P[OPh](3))] and the mixed-valence Ir(I)/Ir(III) complex [(P[OPh](3))(CO)Ir(mu-Pz)(2)Ir(H)(eta(1)-O(2)CCF(3))(CO)(P[OPh](3))].  相似文献   

11.
The reaction of [Ir(IMes)(COD)Cl], [IMes = 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene, COD = 1,5-cyclooctadiene] with pyridazine (pdz) and phthalazine (phth) results in the formation of [Ir(COD)(IMes)(pdz)]Cl and [Ir(COD)(IMes)(phth)]Cl. These two complexes are shown by nuclear magnetic resonance (NMR) studies to undergo a haptotropic shift which interchanges pairs of protons within the bound ligands. When these complexes are exposed to hydrogen, they react to form [Ir(H)2(COD)(IMes)(pdz)]Cl and [Ir(H)2(COD)(IMes)(phth)]Cl, respectively, which ultimately convert to [Ir(H)2(IMes)(pdz)3]Cl and [Ir(H)2(IMes)(phth)3]Cl, as the COD is hydrogenated to form cyclooctane. These two dihydride complexes are shown, by NMR, to undergo both full N-heterocycle dissociation and a haptotropic shift, the rates of which are affected by both steric interactions and free ligand pKa values. The use of these complexes as catalysts in the transfer of polarisation from para-hydrogen to pyridazine and phthalazine via signal amplification by reversible exchange (SABRE) is explored. The possible future use of drugs which contain pyridazine and phthalazine motifs as in vivo or clinical magnetic resonance imaging probes is demonstrated; a range of NMR and phantom-based MRI measurements are reported.  相似文献   

12.
N‐Heterocyclic carbene‐phosphinidene adducts of the type (IDipp)PR [R = Ph ( 5 ), SiMe3 ( 6 ); IDipp = 1,3‐bis(2,6‐diisopropylphenyl)imidazolin‐2‐ylidene] were used as ligands for the preparation of rhodium(I) and iridium(I) complexes. Treatment of (IDipp)PPh ( 5 ) with the dimeric complexes [M(μ‐Cl)(COD)]2 (M = Rh, Ir; COD = 1,5‐cyclcooctadiene) afforded the corresponding metal(I) complexes [M(COD)Cl{(IDipp)PPh}] [M = Rh ( 7 ) or Ir ( 8 )] in moderate to good yields. The reaction of (IDipp)PSiMe3 ( 6 ) with [Ir(μ‐Cl)(COD)]2 did not yield trimethylsilyl chloride elimination product, but furnished the 1:1 complex, [Ir(COD)Cl{(IDipp)PSiMe3}] ( 9 ). Additionally, the rhodium‐COD complex 7 was converted into the corresponding rhodium‐carbonyl complex [Rh(CO)2Cl{(IDipp)PPh}] ( 10 ) by reaction with an excess of carbon monoxide gas. All complexes were fully characterized by NMR spectroscopy, microanalyses, and single‐crystal X‐ray diffraction studies.  相似文献   

13.
The remarkable luminescence properties of the platinum(II) complex of 1,3-di(2-pyridyl)benzene, acting as a terdentate N=C=N-coordinating ligand cyclometalated at C2 of the benzene ring ([PtL(1)Cl]), have been investigated, together with those of two new 5-substituted analogues [PtL(2)Cl] and [PtL(3)Cl] [HL(2) = methyl-3,5-di(2-pyridyl)benzoate; HL(3) = 3,5-di(2-pyridyl)toluene]. All three complexes are intense emitters in degassed solution at 298 K (lambda(max) 480-580 nm; phi(lum) = 0.60, 0.58, and 0.68 in CH(2)Cl(2)), displaying highly structured emission spectra in dilute solution, with lifetimes in the microsecond range (7.2, 8.0, and 7.8 micros). On the basis of the very small Stokes shift, the highly structured profiles, and the relatively long lifetimes, the emission is attributed to an excited state of primarily (3)pi-pi character. At concentrations >1 x 10(-)(5) M, structureless excimer emission centered at ca. 700 nm is observed. The X-ray crystal structure of [PtL(2)Cl] is also reported.  相似文献   

14.
The synthesis and spectroscopic properties of trans-[Cl(16-TMC)Ru[double bond]C[double bond]CHR]PF(6) (16-TMC = 1,5,9,13-tetramethyl-1,5,9,13-tetraazacyclohexadecane, R = C(6)H(4)X-4, X = H (1), Cl (2), Me (3), OMe (4); R = CHPh(2) (5)), trans-[Cl(16-TMC)Ru[double bond]C[double bond]C[double bond]C(C(6)H(4)X-4)(2)]PF(6) (X = H (6), Cl (7), Me (8), OMe (9)), and trans-[Cl(dppm)(2)M[double bond]C[double bond]C[double bond]C(C(6)H(4)X-4)(2)]PF(6) (M = Ru, X = H (10), Cl (11), Me (12); M = Os, X = H (13), Cl (14), Me (15)) are described. The crystal structures of 1, 5, 6, and 8 show that the Ru-C(alpha) and C(alpha)-C(beta) distances of the allenylidene complexes fall between those of the vinylidene and acetylide relatives. Two reversible redox couples are observed by cyclic voltammetry for 6-9, with E(1/2) values ranging from -1.19 to -1.42 and 0.49 to 0.70 V vs Cp(2)Fe(+/0), and they are both 0.2-0.3 and 0.1-0.2 V more reducing than those for 10-12 and 13-15, respectively. The UV-vis spectra of the vinylidene complexes 1-4 are dominated by intense high-energy bands at lambda(max) < or = 310 nm (epsilon(max) > or = 10(4) dm(3) mol(-1) cm(-1)), while weak absorptions at lambda(max) > or = 400 nm (epsilon(max) < or = 10(2) dm(3) mol(-1) cm(-1)) are tentatively assigned to d-d transitions. The resonance Raman spectrum of 5 contains a nominal nu(C[double bond]C) stretch mode of the vinylidene ligand at 1629 cm(-1). The electronic absorption spectra of the allenylidene complexes 6-9 exhibit an intense absorption at lambda(max) = 479-513 nm (epsilon(max) = (2-3) x 10(4) dm(3) mol(-1) cm(-1)). Similar electronic absorption bands have been found for 10-12, but the lowest energy dipole-allowed transition is blue-shifted by 1530-1830 cm(-1) for the Os analogues 13-15. Ab initio calculations have been performed on the ground state of trans-[Cl(NH(3))(4)Ru[double bond]C[double bond]C[double bond]CPh(2)](+) at the MP2 level, and imply that the HOMO is not localized purely on the metal center or allenylidene ligand. The absorption band of 6 at lambda(max) = 479 nm has been probed by resonance Raman spectroscopy. Simulations of the absorption band and the resonance Raman intensities show that the nominal nu(C[double bond]C[double bond]C) stretch mode accounts for ca. 50% of the total vibrational reorganization energy, indicating that this absorption band is strongly coupled to the allenylidene moiety. The excited-state reorganization of the allenylidene ligand is accompanied by rearrangement of the Ru[double bond]C and Ru[bond]N (of 16-TMC) fragments, which supports the existence of bonding interaction between the metal and C[double bond]C[double bond]C unit in the electronic excited state.  相似文献   

15.
Novel neutral and cationic Rh(I) and Ir(I) complexes that contain only DMSO molecules as dative ligands with S-, O-, and bridging S,O-binding modes were isolated and characterized. The neutral derivatives [RhCl(DMSO)(3)] (1) and [IrCl(DMSO)(3)] (2) were synthesized from the dimeric precursors [M(2)Cl(2)(coe)(4)] (M=Rh, Ir; COE=cyclooctene). The dimeric Ir(I) compound [Ir(2)Cl(2)(DMSO)(4)] (3) was obtained from 2. The first example of a square-planar complex with a bidentate S,O-bridging DMSO ligand, [(coe)(DMSO)Rh(micro-Cl)(micro-DMSO)RhCl(DMSO)] (4), was obtained by treating [Rh(2)Cl(2)(coe)(4)] with three equivalents of DMSO. The mixed DMSO-olefin complex [IrCl(cod)(DMSO)] (5, COD=cyclooctadiene) was generated from [Ir(2)Cl(2)(cod)(2)]. Substitution reactions of these neutral systems afforded the complexes [RhCl(py)(DMSO)(2)] (6), [IrCl(py)(DMSO)(2)] (7), [IrCl(iPr(3)P)(DMSO)(2)] (8), [RhCl(dmbpy)(DMSO)] (9, dmbpy=4,4'-dimethyl-2,2'-bipyridine), and [IrCl(dmbpy)(DMSO)] (10). The cationic O-bound complex [Rh(cod)(DMSO)(2)]BF(4) (11) was synthesized from [Rh(cod)(2)]BF(4). Treatment of the cationic complexes [M(coe)(2)(O=CMe(2))(2)]PF(6) (M=Rh, Ir) with DMSO gave the mixed S- and O-bound DMSO complexes [M(DMSO)(2)(DMSO)(2)]PF(6) (Rh=12; Ir=in situ characterization). Substitution of the O-bound DMSO ligands with dmbpy or pyridine resulted in the isolation of [Rh(dmbpy)(DMSO)(2)]PF(6) (13) and [Ir(py)(2)(DMSO)(2)]PF(6) (14). Oxidative addition of hydrogen to [IrCl(DMSO)(3)] (2) gave the kinetic product fac-[Ir(H)(2)Cl(DMSO)(3)] (15) which was then easily converted to the more thermodynamically stable product mer-[Ir(H)(2)Cl(DMSO)(3)] (16). Oxidative addition of water to both neutral and cationic Ir(I) DMSO complexes gave the corresponding hydrido-hydroxo addition products syn-[(DMSO)(2)HIr(micro-OH)(2)(micro-Cl)IrH(DMSO)(2)][IrCl(2)(DMSO)(2)] (17) and anti-[(DMSO)(2)(DMSO)HIr(micro-OH)(2)IrH(DMSO)(2)(DMSO)][PF(6)](2) (18). The cationic [Ir(DMSO)(2)(DMSO)(2)]PF(6) complex (formed in situ from [Ir(coe)(2)(O=CMe(2))(2)]PF(6)) also reacts with methanol to give the hydrido-alkoxo complex syn-[(DMSO)(2)HIr(micro-OCH(3))(3)IrH(DMSO)(2)]PF(6) (19). Complexes 1, 2, 4, 5, 11, 12, 14, 17, 18, and 19 were characterized by crystallography.  相似文献   

16.
Copper(I) and rhenium(I) complexes [Cu(PPh(3))(2)(dppz-11-COOEt)]BF(4), [Cu(PPh(3))(2)(dppz-11-Br)]BF(4), [Re(CO)(3)Cl(dppz-11-COOEt)] and [Re(CO)(3)Cl(dppz-11-Br)] (dppz-11-COOEt = dipyrido-[3,2a:2',3'c]phenazine-11-carboxylic ethyl ester, dppz-11-Br = 11-bromo-dipyrido[3,2a:2',3'c]-phenazine) have been studied using Raman, resonance Raman, and transient resonance Raman (TR(2)) spectroscopy, in conjunction with computational chemistry. DFT (B3LYP) frequency calculations with a 6-31G(d) basis set for the ligands and copper(I) centers and an effective core potential (LANL2DZ) for rhenium in the rhenium(I) complexes show close agreement with the experimental nonresonance Raman spectra. Modes that are phenazine-based, phenanthroline-based, and delocalized across the entire ligand structure were identified. The nature of the absorbing chromophores at 356 nm for ligands and complexes was established using resonance Raman spectroscopy in concert with vibrational assignments from calculations. This analysis reveals that the dominant chromophore for the complexes measured at 356 nm is ligand-centered (LC), except for [Re(CO)(3)Cl(dppz-11-Br)], which appears to have additional chromophores at this wavelength. Calculations on the reduced complexes, undertaken to model the metal-to-ligand charge transfer (MLCT) excited state, show that the reducing electron occupies a ligand MO that is delocalized across the ligand structure. Resonance Raman spectra (lambda(exc) = 514.5 nm) of the reduced rhenium complexes show a similar spectral pattern to that observed in [Re(CO)(3)Cl(dppz)](*-); the measured bands are therefore attributed to ligand radical anion modes. These bands lie at 1583-1593 cm(-1) for [Re(CO)(3)Cl(dppz-11-COOEt)] and 1611 cm(-1) for [Re(CO)(3)Cl(dppz-11-Br)]. The thermally equilibrated excited states are examined using nanosecond-TR(2) spectroscopy (lambda(exc) = 354.7 nm). The TR(2) spectra of the ligands provide spectral signatures for the (3)LC state. A band at 1382 cm(-1) is identified as a marker for the (3)LC states of both ligands. TR(2) spectra of the copper and rhenium complexes of dppz-11-Br show this (3)LC band, but it is not prominent in the spectra of [Cu(PPh(3))(2)(dppz-11-COOEt)](+) and [Re(CO)(3)Cl(dppz-11-COOEt)]. Calculations suggest that the lowest triplet states of both of the rhenium(I) complexes and [Cu(PPh(3))(2)(dppz-11-Br)](+) are metal-to-ligand charge transfer in nature, but the lowest triplet state of [Cu(PPh(3))(2)(dppz-11-COOEt)](+) appears to be LC in character.  相似文献   

17.
Iridabicycles [Ir{κ3-N,C,O-(pyC(H)=C(C(O)Me)2}(Cl)(L−L)](L−L=cod (cod=1,5-cyclooctadiene), 1 a ; bipy (bipy=2,2’-bipyridine), 1 b ) have been obtained by oxidative coordination of 3-(pyridine-2-yl-methylene)pentane-2,4-dione L1 , to the complexes [{Ir(μ-Cl)(cod)}2] and [{Ir(μ-Cl)(coe)2}2] (coe=cis-cyclooctene), the latter in the presence of bipy. Remarkably, cleavage of the C3−C(O)Me bond of L1 has instead been achieved in the reaction with [Ir(Cl)(dmb)2] (dmb=2,3-dimethylbutadiene), yielding a compound formulated as [Ir{κ2-N,C-(pyC(H)C(C(O)Me))}(CO)(μ-Cl)(Me)]2, 2 . Treatment of dimer 2 with DMSO or PMe3 produced the complexes[Ir{κ2-N,C-(pyC(H)C(C(O)Me)}(CO)Cl(Me)L] (L=DMSO, 3 a ; PMe3, 3 b ). Plausible mechanisms for the reactions leading to complexes 1 and 2 are proposed by means of DFT calculations.  相似文献   

18.
Two approaches are reported to achieve efficient blue to near-UV emission from triscyclometalated iridium(III) materials related to the previously reported complex, fac-Ir(ppz)(3) (ppz = 1-phenylpyrazolyl-N,C(2)'). The first involves replacement of the phenyl group of the ppz ligand with a 9,9-dimethyl-2-fluorenyl group, i.e., fac-tris(1-[(9,9-dimethyl-2-fluorenyl)]pyrazolyl-N,C(2)')iridium(III), abbreviated as fac-Ir(flz)(3). Crystallographic analysis reveals that both fac-Ir(flz)(3) and fac-Ir(ppz)(3) have a similar coordination environment around the Ir center. The absorption and emission spectra of fac-Ir(flz)(3) are red shifted from those of fac-Ir(ppz)(3). The fac-Ir(flz)(3) complex gives blue photoluminescence (PL) with a high efficiency (lambda(max) = 480 nm, phi(PL) = 0.38) at room temperature. The lifetime and quantum efficiency were used to determine the radiative and nonradiative rates (1.0 x 10(4) and 2.0 x 10(4) s(-1), respectively). The second approach utilizes N-heterocyclic carbene (NHC) ligands to form triscyclometalated Ir complexes. Complexes with two different NHC ligands, i.e., iridium tris(1-phenyl-3-methylimidazolin-2-ylidene-C,C(2)'), abbreviated as Ir(pmi)(3), and iridium tris(1-phenyl-3-methylbenzimidazolin-2-ylidene-C,C(2)'), abbreviated as Ir(pmb)(3), were both isolated as facial and meridianal isomers. Comparison of the crystallographic structures of the fac- and mer-isomers of Ir(pmb)(3) with the corresponding Ir(ppz)(3) isomers indicates that the imidazolyl-carbene ligand has a stronger trans influence than pyrazolyl and, thus, imparts a greater ligand field strength. Both fac-Ir(pmi)(3) and fac-Ir(pmb)(3) complexes display strong metal-to-ligand-charge-transfer absorption transitions in the UV (lambda = 270-350 nm) and phosphoresce in the near-UV region (E(0)(-)(0) = 380 nm) at room temperature with phi(PL) values of 0.02 and 0.04, respectively. The radiative decay rates for fac-Ir(pmi)(3) and fac-Ir(pmb)(3) (5 x 10(4) s(-1) and 18 x 10(4) s(-1), respectively) are somewhat higher than that of fac-Ir(flz)(3), but the nonradiative rates are two orders of magnitude faster (i.e., (2-4) x 10(6) s(-1)).  相似文献   

19.
Treatment of [[Ti(eta5-C5Me5)(mu-NH)]3(mu3-N)] (1) with the diolefin complexes [[MCl(cod)]2] (M = Rh, Ir; cod = 1,5-cyclooctadiene) in toluene afforded the ionic complexes [M-(cod)(mu3-NH)3Ti3(eta5-C5Me5)3(mu3-N)]Cl [M = Rh (2), Ir (3)]. Reaction of complexes 2 and 3 with [Ag(BPh4)] in dichloromethane leads to anion metathesis and formation of the analogous ionic derivatives [M(cod)(mu3-NH)3Ti3-(eta5-C5Me5)3(mu3-N)][BPh4] [M = Rh (4), Ir (5)]. An X-ray crystal structure determination for 5 reveals a cube-type core [IrTi3N4] for the cationic fragment, in which 1 coordinates in a tripodal fashion to the iridium atom. Reaction of the diolefin complexes [[MCl(cod))2] (M = Rh, Ir) and [[RhCl(C2H4)2]2] with the lithium derivative [[Li(mu3-NH)2(mu3-N)-Ti3(eta5-C5Me5)3(mu3-N)]2] x C7H8 (6 C7H8) in toluene gave the neutral cube-type complexes [M(cod)(mu-NH)2(mu3-N)Ti3-(eta5-C5Me5)3(mu3-N)] [M = Rh (7), Ir (8)] and [Rh(C2H4)2(mu3-NH)2(mu3-N)Ti3(eta5-C5Me5)3(mu3-N)] (9), respectively. Density functional theory calculations have been carried out on the ionic and neutral azaheterometallocubane complexes to understand their electronic structures.  相似文献   

20.
We report a theoretical analysis of a series of heteroleptic iridium(III) complexes (dox)(2)Ir(acac) [dox = 2,5-diphenyl-1,3,4-oxadiazolato-N,C(2), acac = acetylacetonate] (1a), (fox)(2)Ir(acac) [fox = 2,5-bis(4-fluorophenyl)-1,3,4-oxadiazolato-N,C(2)] (1b), (fox)(2)Ir(Et(2)dtc) [Et(2)dtc = N,N'-diethyldithiocarbamate] (2), (fox)(2)Ir(Et(2)dtp) [Et(2)dtp = O,O'-diethyldithiophosphate] (3), (pypz)(2)Ir(acac) [pypz = 3,5-di(2-pyridyl)pyrazole] (4a), (O-pypz)(2)Ir(acac) (4b), (S-pypz)(2)Ir(acac) (4c) and (bptz)(2)Ir(acac) [bptz = 3-tert-butyl-5-(2-pyridyl)triazole] (5) by using the density functional theory (DFT) method to investigate their electronic structures and photophysical properties and obtain further insights into the phosphorescent efficiency mechanism. Meanwhile, we also investigate the influence of ancillary and cyclometalated ligands on the properties of the above complexes. The results reveal that the nature of the ancillary ligands can influence the electron density distributions of frontier molecular orbitals and their energies, resulting in change in transition character and emission color, while the different cyclometalated ligands have a large impact on the charge transfer performances of the studied complexes. The calculated absorption and luminescence properties of the four complexes 1a, 1b, 2 and 3 are compared with the available experimental data and a good agreement is obtained. Further, the assumed complexes 4a and 4b possess better charge transfer abilities and more balanced charge transfer rates, and they are potential candidates as blue-emitting materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号