首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Jiang Y  Zhang X  Shan C  Hua S  Zhang Q  Bai X  Dan L  Niu L 《Talanta》2011,85(1):76-81
Prussian blue (PB) was grown compactly on graphene matrix by electrochemical deposition. The as-prepared PB-graphene modified glassy carbon electrode (PB-graphene/GCE) showed excellent electrocatalytic activity towards both the reduction of hydrogen peroxide and the oxidation of hydrazine, which could be attributed to the remarkable synergistic effect of graphene and PB. The PB-graphene/GCE showed sensitive response to H2O2 with a wide linear range of 10-1440 μM at 0.0 V, and to hydrazine with a wide linear range of 10-3000 μM at 0.35 V. The detection limit was 3 μM and 7 μM, respectively, and both of them had rapid response within 5 s to reach 95% steady state response. The wide linear range, good selectivity and long-time stability of the PB-graphene/GCE make it possible for the practical amperometric detection of hydrogen peroxide and hydrazine.  相似文献   

2.
In this paper, the highly intrinsic peroxidase-like catalytic activity of nitrogen-doped graphene quantum dots (N-GQDs) is revealed. This activity was greatly dependent on pH, temperature and H2O2 concentration. The experimental results showed that the stable N-GQDs could be used for the detection of H2O2 and glucose over a wide range of pH and temperature, offering a simple, highly selective and sensitive approach for their colorimetric sensing. The linearity between the analyte concentration and absorption ranged from 20 to 1170 μM for H2O2 and 25 to 375 μM for glucose with a detection limit of 5.3 μM for H2O2 and 16 μM for glucose. This assay was also successfully applied to the detection of glucose concentrations in diluted serum and fruit juice samples.  相似文献   

3.
A nitrite sensor based on immobilized Dawson-type tungstophosphate α-K7[H4PW18O62]·18H2O (PW18) in multilayers of charged polyelectrolyte poly(allylamine hydrochloride) (PAH) on a glassy carbon electrode is described. A nitrite sensor manufactured with 10 layers has a sensitivity of ∼4 nA/μM nitrite, fast response time (<6 s), low detection limit (∼0.1 μM), high selectivity towards endogenous interferences such as nitrate and molecular oxygen, a linear range from 0.1 μM to at least 20 mM nitrite and was stable for at least 2 months. In addition, such nitrite sensors can operate in a pH range from 1 to 9, and the sensitivity can be increased by increasing the number of layers at the expense of increasing the response time.  相似文献   

4.
Some nanostructures are reported to possess enzyme-mimetic activities similar to those of natural enzymes. Herein, highly-dispersed Pt nanodots on Au nanorods (HD- PtNDs@AuNRs) with mimetic peroxidase activity were designed as an active electrode modifier for fabrication of a hydrogen peroxide (H2O2) electrochemical sensor. The HD-PtNDs@AuNRs were synthesized by a seed-mediated growth approach and confirmed by scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, and UV–vis spectroscopy. The electrochemical and catalytical performances of HD-PtNDs@AuNRs towards H2O2 reduction were investigated in detail by cyclic voltammetry and amperometry. The HD-PtNDs@AuNRs modified electrode displayed a high catalytic activity to H2O2 at −0.10 V (versus SCE), a rapid response within 5 s, a wide linear range of 2.0–3800.0 μM, a detection limit of 1.2 μM (S/N = 3), and a high sensitivity of 181 μA mM−1 cm−2. These results suggested a promising potential of fabricating H2O2 electrochemical sensor using HD- PtNDs@AuNRs.  相似文献   

5.
Arrays of nanoscopic gold tubes were prepared by electroless plating of the metal within the pores of nanoporous polycarbonate track-etched membranes. A procedure for fabricating an ensemble of enzyme-modified nanoelectrodes has been developed based on the efficient immobilization of horseradish peroxidase (HRP) to the gold nanotubes array using self-assembled monolayers (mercaptoethylamine or mercaptopropionic acid) as anchoring layers. Hydrogen peroxide (H2O2) was determined electrochemically by using gold nanoelectrode ensembles (NEE) functionalized or not in phosphate buffer solution (PB) with or without a mediator (hydroquinone, H2Q). Bare NEE displays a remarkable sensitivity (14 μA mM−1 in H2Q at −0.1 V versus Ag/AgCl) compared to a classical gold macroelectrode (0.41 μA mM−1). The gold nanoparticles that form the tubular structure act as excellent catalytic surfaces towards the oxidation and the reduction of H2O2. The HRP modified NEE presents a slightly lower sensitivity (9.5 μA mM−1) than bare NEE. However, this system presents an enhanced limit of detection (up to 4 × 10−6 M) and a higher selectivity towards the detection of H2O2 over a wide range of potentials. The lifetime, fabrication reproducibility and measurement repeatability of the HRP enzyme electrode were evaluated with satisfactory results.  相似文献   

6.
Jipei Yuan  Jianyuan Yin 《Talanta》2009,77(5):1858-4893
A simple and sensitive assay system for glucose based on the glutathione (GSH)-capped CdTe quantum dots (QDs) was developed. GSH-capped CdTe QDs exhibit higher sensitivity to H2O2 produced from the glucose oxidase catalyzed oxidation of glucose, and are also more biocompatible than other thiols-capped QDs. Based on the quenching of H2O2 on GSH-capped QDs, glucose can be detected. The detection conditions containing reaction time, the concentration of glucose oxidase and the sizes of QDs were optimized and the detection limits for glucose was determined to be 0.1 μM; two detection ranges of glucose from 1.0 μM to 0.5 mM and from 1.0 mM to 20 mM, respectively were obtained. The detection limit was almost a 1000 times lower than other QDs-based optical glucose sensing systems. The developed glucose detection system was simple and facile with no need of complicated enzyme immobilization and modification of QDs.  相似文献   

7.
The gold nanostar@silica core–shell nanoparticles conjugated with glucose oxidase (GOx) enzyme molecules have been developed as the surface-enhanced Raman scattering (SERS) biosensor for label-free detection of glucose. The surface-immobilized GOx enzyme catalyzes the oxidation of glucose, producing hydrogen peroxide. Under laser excitation, the produced H2O2 molecules near the Au nanostar@silica nanoparticles generate a strong SERS signal, which is used to measure the glucose concentration. The SERS signal of nanostar@silica∼GOx nanoparticle-based sensing assay shows the dynamic response to the glucose concentration range from 25 μM to 25 mM in the aqueous solution with the limit of detection of 16 μM. The sensing assay does not show any interference when glucose co-exists with both ascorbic acid and uric acid. The sensor can be applied to a saliva sample.  相似文献   

8.
Qu F  Shi A  Yang M  Jiang J  Shen G  Yu R 《Analytica chimica acta》2007,605(1):28-33
Prussian blue nanowire array (PBNWA) was prepared via electrochemical deposition with polycarbonate membrane template for effective modification of glassy carbon electrode. The PBNWA electrode thus obtained was demonstrated to have high-catalytic activity for the electrochemical reduction of hydrogen peroxide in neutral media. This enabled the PBNWA electrode to show rapid response to H2O2 at a low potential of −0.1 V over a wide range of concentrations from 1 × 10−7 M to 5 × 10−2 M with a high sensitivity of 183 μA mM−1 cm−2. Such a low-working potential also substantially improved the selectivity of the PBNWA electrode against most electroactive species such as ascorbic acid and uric acid in physiological media. A detection limit of 5 × 10−8 M was obtained using the PBNWA electrode for H2O2, which compared favorably with most electroanalysis procedures for H2O2. A biosensor toward glucose was then constructed with the PBNWA electrode as the basic electrode by crosslinking glucose oxidase (GOx). The glucose biosensor allowed rapid, selective and sensitive determination of glucose at −0.1 V. The amperometric response exhibited a linear correlation to glucose concentration through an expanded range from 2 × 10−6 M to 1 × 10−2 M, and the response time and detection limit were determined to be 3 s and 1 μM, respectively.  相似文献   

9.
Wang W  Zhang TJ  Zhang DW  Li HY  Ma YR  Qi LM  Zhou YL  Zhang XX 《Talanta》2011,84(1):71-77
A novel matrix, gold nanoparticles-bacterial cellulose nanofibers (Au-BC) nanocomposite was developed for enzyme immobilization and biosensor fabrication due to its unique properties such as satisfying biocompatibility, good conductivity and extensive surface area, which were inherited from both gold nanoparticles (AuNPs) and bacterial cellulose nanofibers (BC). Heme proteins such as horseradish peroxidase (HRP), hemoglobin (Hb) and myoglobin (Mb) were successfully immobilized on the surface of Au-BC nanocomposite modified glassy carbon electrode (GCE). The immobilized heme proteins showed electrocatalytic activities to the reduction of H2O2 in the presence of the mediator hydroquinone (HQ), which might be due to the fact that heme proteins retained the near-native secondary structures in the Au-BC nanocomposite which was proved by UV-vis and IR spectra. The response of the developed biosensor to H2O2 was related to the amount of AuNPs in Au-BC nanocomposite, indicating that the AuNPs in BC network played an important role in the biosensor performance. Under the optimum conditions, the biosensor based on HRP exhibited a fast amperometric response (within 1 s) to H2O2, a good linear response over a wide range of concentration from 0.3 μM to 1.00 mM, and a low detection limit of 0.1 μM based on S/N = 3. The high performance of the biosensor made Au-BC nanocomposite superior to other materials as immobilization matrix.  相似文献   

10.
Gui-Fen Jie 《Talanta》2007,71(4):1476-1480
Electrogenerated chemiluminescence (ECL) of CdS nanotubes in aqueous solution and its sensing application were studied by entrapping the CdS nanotubes in carbon paste electrode. Two ECL peaks were observed at −0.9 V (ECL-1) and −1.2 V (ECL-2), respectively, when the potential was cycled between 0 and −1.6 V. The electrochemically reduced nanocrystal species of CdS nanotubes could collide with the oxidized species in an annihilation process to produce the peak of ECL-1. The electron-transfer reaction between the reduced CdS nanocrystal species and oxidant coreactants such as S2O82−, H2O2, and reduced dissolved oxygen led to the appearance of the ECL-2 peak. Based on the enhancing effect of H2O2 on ECL-2 intensity, a novel CdS ECL sensor was developed for H2O2 detection. The sensor exhibited a detection limit of 0.1 μM and a linear range from 0.5 μM to 0.01 mM. The relative standard deviations of five replicate determinations of 5 μM H2O2 was 2.6%. In addition, the ECL spectrum in aqueous solution also exhibited two peaks at 500 and 640 nm, respectively.  相似文献   

11.
Xu Q  Zhu JJ  Hu XY 《Analytica chimica acta》2007,597(1):151-156
Ordered mesoporous polyaniline film has been fabricated by electrodepositing from the hexagonal lyotropic liquid crystalline (LCC). Horseradish peroxidase (HRP), as a symbol biomolecule, was successfully immobilized on the film to construct a new kind of hydrogen peroxide biosensor. The biosensor combined the advantages of the good conductivity of polyaniline and the higher surface area of the ordered mesoporous film. Polyaniline could be served as a wire to relay electron between HRP and the electrode. The high surface area of the film supplied more sites for HRP immobilization, therefore increased the catalytic activity of the biosensor. The ordered mesoporous character of the film increased the rate of mass transport, which resulted in the improvement of sensor response and linearity. The biosensor displayed excellent electrocatalytic response to the detection of H2O2 in a concentration range from 1.0 μM to 2.0 mM with a detection limit of 0.63 μM. Good reproducibility, stability, high precision, wide linearity and low detection limit were assessed for the biosensor.  相似文献   

12.
Graphene-CdS (G-CdS) nanocomposites were successfully prepared by CdS nanocrystals (CdS NCs) formed in situ on the surface of graphene sheets, using graphene oxide (GO) sheets with rich negatively charged carboxylic acid groups as starting materials. Compared with pure CdS NCs, the presence of the graphene doped in G-CdS nanocomposites could facilitate the electrochemical redox process of CdS NCs; further, the as-prepared G-CdS nanocomposite can react with H2O2 to generate strong and stable electrochemiluminescent (ECL) emission, which not only enhances its ECL intensity by about 4.3-fold but also decreases its onset potential for about 320 mV. The as-prepared solid-state ECL H2O2 sensor shows acceptable linear response from 5 μM up to 1 mM with a detection limit of 1.7 μM (S/N = 3). The ECL H2O2 sensor exhibits excellent reproducibility and long-term stability. Such a property would promote the potential application of the graphene as enhanced materials in fabricating sensors for chemical and biochemical analysis.  相似文献   

13.
We present a new, facile and efficient method to prepare functional graphene (GN) hybrid nanomaterials using direct electrolytic exfoliation of graphite robs in hemin (HN) and single-walled carbon nanotube (SWCNT) solution. During the exfoliation process, HN and SWCNT were simultaneously adsorbed on the surface of GN nanosheets through noncovalent π–π interaction, and then 3D GN–HN–SWCNT hybrid nanomaterials were formed. Due to the synergic effect among GN, HN, and SWCNT, these hybrid nanomaterials possessed excellent electrocatalysis properties and were used to construct novel electrochemical biosensor for H2O2 determination. The results displayed a wide linear range of 0.2 μM–0.4 mM and a low detection limit of 0.05 μM. Moreover, the developed sensor was successfully applied for real samples, such as beverages, and showed great promise in routine sensing applications.  相似文献   

14.
Xiujie Bian  E. Jin 《Talanta》2010,81(3):813-83
Pt/polypyrrole (PPy) hybrid hollow microspheres were successfully prepared by wet chemical method via Fe3O4 template and evaluated as electrocatalysts for the reduction of hydrogen peroxide. The as-synthesized products were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS), X-ray diffraction (XRD), inductive coupled plasma emission spectrum (ICP) and Fourier-transform infrared spectra (FTIR) measurements. The results exhibited that ultra-high-density Pt nanoparticles (NPs) were well deposited on the PPy shell with the mean diameters of around 4.1 nm. Cyclic voltammetry (CV) results demonstrated that Pt/PPy hybrid hollow microspheres, as enzyme-less catalysts, exhibited good electrocatalytic activity towards the reduction of hydrogen peroxide in 0.1 M phosphate buffer solution (pH = 7.0). The composite had a fast response of less than 2 s with linear range of 1.0-8.0 mM and a relatively low detection limit of 1.2 μM (S/N = 3). The sensitivity of the sensor for H2O2 was 80.4 mA M−1 cm−2.  相似文献   

15.
Three intact and four degraded hyaluronans were investigated by using chemiluminometry, differential scanning calorimetry, and thermogravimetry. Degradation of hyaluronan was induced by a system containing H2O2 alone (882 mM); 55 mM H2O2plus 1.25 μM CuCl2; NaOCl alone (10 mM); and NaOCl plus CuCl2 and ascorbic acid (10 mM, 0.1 μM, and 100 μM, respectively). The four different oxidative systems yielded biopolymer fragments represented by similar viscosity characteristics. The results obtained by using chemiluminescence and thermoanalytical methods indicate that hyaluronans of similar rheological properties could be distinguished from each other.  相似文献   

16.
Copper nanoclusters (Cu NCs) are found to possess intrinsic peroxidase-like activity for the first time. Similar to nature peroxidase, they can catalyze the oxidation of 3,3′,5,5′-tetramethylbenzidine by H2O2 to produce a nice blue color reaction. Compared with horseradish peroxidase, Cu NCs exhibits higher activity near neutral pH, which is beneficial for biological applications. The increase in absorbance caused by the Cu NCs catalytic reaction allows the detection of H2O2 in the range of 10 μM to 1 mM with a detection limit of 10 μM. A colorimetric method for glucose detection was also developed by combining the Cu NCs catalytic reaction and the enzymatic oxidation of glucose with glucose oxidase. Taking into account the advantages of ultra-small size, good stability, and high biocompatibility in aqueous solutions, Cu NCs are expected to have potential applications in biotechnology and clinical diagnosis as enzymatic mimics.  相似文献   

17.
Mei Hu  Hao-Ting Lu  Lian-Hui Wang 《Talanta》2010,82(3):997-536
A novel label-free detection system based on CdTe/CdS quantum dots (QDs) was designed for the direct measurement of glucose. Herein we demonstrated that the photoluminescence (PL) of CdTe/CdS QDs was sensitive to hydrogen peroxide (H2O2). With d-glucose as a substrate, H2O2 that intensively quenched the QDs PL can be produced via the catalysis of glucose oxidase (GOx). Experimental results showed that the decrease of the QDs PL was proportional to the concentration of glucose within the range of 1.8 μM to 1 mM with the detection limit of 1.8 μM under the optimized experimental conditions. In addition, the QD-based label-free glucose sensing platform was adapted to 96-well plates for fluorescent assay, enhancing the capabilities and conveniences of this detection platform. An excellent response to the concentrations of glucose was found within the range of 2-30 mM. Glucose in blood and urine samples was effectively detected via this strategy. The comparison with commercialized glucose meter indicated that this proposed glucose assay system is not only simple, sensitive, but also reliable and suitable for practical application. The high sensitivity, versatility, portability, high-throughput and low cost of this glucose sensor implied its potential in point-of-care clinical diagnose of diabetes and other fields.  相似文献   

18.
Yang H  Zhu Y 《Talanta》2006,68(3):569-574
A wide size range of SiO2 particles were synthesized and were used as enzyme immobilization carriers to fabricate glucose biosensors. The size of the particles was in the range of 17-520 nm. These biosensors could be operated under physiological conditions (0.1 M phosphate buffer, pH 7.2). Particle size could affect the performance of SiO2 modified glucose biosensors drastically. The smaller particles had higher performance. The smallest SiO2 modified biosensor could work well in the glucose concentration range of 0.02-10 mM with a correlation coefficient of 0.9993. Its sensitivity was 2.08 μA/mM and the detection limit was 1.5 μM glucose.  相似文献   

19.
Yongjin Zou  Lixian Sun  Fen Xu 《Talanta》2007,72(2):437-442
A Prussian Blue (PB)/polyaniline (PANI)/multi-walled carbon nanotubes (MWNTs) composite film was fabricated by step-by-step electrodeposition on glassy carbon electrode (GCE). The electrode prepared exhibits enhanced electrocatalytic behavior and good stability for detection of H2O2 at an applied potential of 0.0 V. The effects of MWNTs thickness, electrodeposition time of PANI and rotating rate on the current response of the composite modified electrode toward H2O2 were optimized to obtain the maximal sensitivity. A linear range from 8 × 10−9 to 5 × 10−6 M for H2O2 detection has been observed at the PB/PANI/MWNTs modified GCE with a correlation coefficient of 0.997. The detection limit is 5 × 10−9 M on signal-to-noise ratio of 3. To the best of our knowledge, this is the lowest detection limit for H2O2 detection. The electrode also shows high sensitivity (526.43 μA μM−1 cm−2) for H2O2 detection which is more than three orders of magnitude higher than the reported.  相似文献   

20.
Wei Zhao  Xia Qin  Zixia Zhao  Lili Chen  Yuxin Fang 《Talanta》2009,80(2):1029-943
A novel strategy to fabricate hydrogen peroxide (H2O2) sensor was developed based on multi-wall carbon nanotube/silver nanoparticle nanohybrids (MWCNT/Ag nanohybrids) modified gold electrode. The process to synthesize MWCNT/Ag nanohybrids was facile and efficient. In the presence of carboxyl groups functionalized multi-wall carbon nanotubes (MWCNTs), silver nanoparticles (Ag NPs) were in situ generated from AgNO3 aqueous solution and readily attached to the MWCNTs convex surfaces at room temperature, without any additional reducing reagent or irradiation treatment. The formation of MWCNT/Ag nanohybrids product was observed by transmission electron microscope (TEM), and the electrochemical properties of MWCNT/Ag nanohybrids modified gold electrode were characterized by electrochemical measurements. The results showed that this sensor had a favorable catalytic ability for the reduction of H2O2. The resulted sensor could detect H2O2 in a linear range of 0.05-17 mM with a detection limit of 5 × 10−7 M at a signal-to-noise ratio of 3. The sensitivity was calculated as 1.42 μA/mM at a potential of −0.2 V. Additionally, it exhibited good reproducibility, long-term stability and negligible interference of ascorbic acid (AA), uric acid (UA), and acetaminophen (AP).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号