首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Mei Hu  Hao-Ting Lu  Lian-Hui Wang 《Talanta》2010,82(3):997-536
A novel label-free detection system based on CdTe/CdS quantum dots (QDs) was designed for the direct measurement of glucose. Herein we demonstrated that the photoluminescence (PL) of CdTe/CdS QDs was sensitive to hydrogen peroxide (H2O2). With d-glucose as a substrate, H2O2 that intensively quenched the QDs PL can be produced via the catalysis of glucose oxidase (GOx). Experimental results showed that the decrease of the QDs PL was proportional to the concentration of glucose within the range of 1.8 μM to 1 mM with the detection limit of 1.8 μM under the optimized experimental conditions. In addition, the QD-based label-free glucose sensing platform was adapted to 96-well plates for fluorescent assay, enhancing the capabilities and conveniences of this detection platform. An excellent response to the concentrations of glucose was found within the range of 2-30 mM. Glucose in blood and urine samples was effectively detected via this strategy. The comparison with commercialized glucose meter indicated that this proposed glucose assay system is not only simple, sensitive, but also reliable and suitable for practical application. The high sensitivity, versatility, portability, high-throughput and low cost of this glucose sensor implied its potential in point-of-care clinical diagnose of diabetes and other fields.  相似文献   

2.
This paper describes the use of reversed-phase liquid chromatography (RPLC) to rapidly characterize Au/Pt core/shell nanoparticles (NPs) produced through seed-assisted synthesis. We monitored the sizes of Au/Pt core/shell NPs by using a porous silica-based RPLC column (pore size: ca. 100 nm) and 30 mM sodium dodecyl sulfate in deionized water as the mobile phase; the plot of the retention time with respect to the logarithm of the size of the Au NPs was linear (R2 = 0.997) for diameters falling in the range from 5.3 to 40.1 nm; from five consecutive runs, the relative standard deviations of these retention times were less than 0.4%. We used the optimal separation conditions of the RPLC system to study the effects that the rate of addition of the reducing agent and the volumes of the seed, shell precursor metal ion, and reducing agent solutions had on the sizes of the Au/Pt core/shell NPs. A good correlation existed between the sizes of the Au/Pt core/shell NPs determined through RPLC and those determined using transmission electron microscopy. RPLC appears to be a useful technique for monitoring the sizes of NPs and nanomaterials in general.  相似文献   

3.
In this work, we develop a simple and rapid sensing method for the visual and fluorescent detection of acetamiprid (AC) based on the inner-filter effect (IFE) of gold nanoparticles (AuNPs) on ratiometric fluorescent quantum dots (RF-QDs). The RF-QDs based dual-emission nanosensor was fabricated by assembling green emissive QDs (QDs539 nm, λem = 539 nm) on the surface of red emissive QDs (QDs661 nm, λem = 661 nm)-doped silica microspheres. The photoluminescence (PL) intensity of RF-QDs could be quenched by AuNPs based on IFE. Acetamiprid can adsorb on the surface of AuNPs due to its cyano group that has good affinity with gold, which could induce the aggregation of AuNPs accompanying color change from red to blue. Thus, the IFE of AuNPs on RF-QDs was weakened and the PL intensity of RF-QDs was recovered accordingly. Under the optimized conditions, the PL intensity of the RF-QDs/AuNPs system was proportional to the concentration of AC in the range of 0.025–5.0 μg mL−1, with a detection limit of 16.8 μg L−1. The established method had been used for AC detection in environmental and agricultural samples with satisfactory results.  相似文献   

4.
A new method for the preparation of mesoporous ZnO/CdS@SiO2 core/shell nanostructure (CSN) has been developed. The mesoporous silica shells allow Ag+ to enter into the interior of the nanostructures to contact with ZnO/CdS core, accordingly causes the quenching of its band edge emission (475 nm) along with a simultaneous enhancement of red emission at around 595 nm. So, a novel visual fluorescence detection strategy for Ag+ ion is proposed based on a common core/shell Quantum dots nanostructure. Under optimal conditions, the enhanced fluorescence intensity at 595 nm increased linearly with the concentration of Ag+ ion ranging from 0.03 μM to 0.24 μM with a detection limit (3σ) of 3.3 nM.  相似文献   

5.
Xiao Wei Shen 《Talanta》2007,72(4):1432-1437
In this paper, the formation of gold nanoparticles (Au NPs) as a result of the thermo-active redox reaction of chlorauric acid (HAuCl4) and glucose in alkaline medium was identified by measuring the plasmon resonance absorption, localized surface plasmon resonance (LSPR), and transmission electron microscopy (TEM) images, for the formation of Au NPs displays characteristic plasmon resonance absorption bands and corresponding LSPR signals. It was found that the resulted LSPR signals could be easily detected with a common spectrofluorometer. With increasing glucose concentration, the LSPR intensity displays linear response with the glucose content over the range from 2.0 to 250.0 μmol l−1. Thus, a novel assay of glucose was established with the limits of determination (3σ) being 0.21 μmol l−1, and the detection of glucose could be made easily in the serum samples of diabetes sufferers. Mechanism investigations showed that the activation energy and molar ratio of the reaction were 34.8 kJ mol−1 and 3:2, respectively.  相似文献   

6.
Jipei Yuan  Jianyuan Yin 《Talanta》2009,77(5):1858-4893
A simple and sensitive assay system for glucose based on the glutathione (GSH)-capped CdTe quantum dots (QDs) was developed. GSH-capped CdTe QDs exhibit higher sensitivity to H2O2 produced from the glucose oxidase catalyzed oxidation of glucose, and are also more biocompatible than other thiols-capped QDs. Based on the quenching of H2O2 on GSH-capped QDs, glucose can be detected. The detection conditions containing reaction time, the concentration of glucose oxidase and the sizes of QDs were optimized and the detection limits for glucose was determined to be 0.1 μM; two detection ranges of glucose from 1.0 μM to 0.5 mM and from 1.0 mM to 20 mM, respectively were obtained. The detection limit was almost a 1000 times lower than other QDs-based optical glucose sensing systems. The developed glucose detection system was simple and facile with no need of complicated enzyme immobilization and modification of QDs.  相似文献   

7.
The gold nanostar@silica core–shell nanoparticles conjugated with glucose oxidase (GOx) enzyme molecules have been developed as the surface-enhanced Raman scattering (SERS) biosensor for label-free detection of glucose. The surface-immobilized GOx enzyme catalyzes the oxidation of glucose, producing hydrogen peroxide. Under laser excitation, the produced H2O2 molecules near the Au nanostar@silica nanoparticles generate a strong SERS signal, which is used to measure the glucose concentration. The SERS signal of nanostar@silica∼GOx nanoparticle-based sensing assay shows the dynamic response to the glucose concentration range from 25 μM to 25 mM in the aqueous solution with the limit of detection of 16 μM. The sensing assay does not show any interference when glucose co-exists with both ascorbic acid and uric acid. The sensor can be applied to a saliva sample.  相似文献   

8.
This paper reports a facile and general method for preparing an imprinted polymer thin shell with Mn-doped ZnS quantum dots (QDs) at the surface of silica nanoparticles by stepwise precipitation polymerization to form the highly-controllable core–shell nanoparticles (MIPs@SiO2–ZnS:Mn QDs) and sensitively recognize the target 2,4-dichlorophenol (2,4-DCP). Acrylamide (AM) and ethyl glycol dimethacrylate (EGDMA) were used as the functional monomer and the cross-linker, respectively. The MIPs@SiO2–ZnS:Mn QDs had a controllable shell thickness and a high density of effective recognition sites, and the thickness of uniform core–shell 2,4-DCP-imprinted nanoparticles was controlled by the total amounts of monomers. The MIPs@SiO2–ZnS:Mn QDs with a shell thickness of 45 nm exhibited the largest quenching efficiency to 2,4-DCP by using the spectrofluorometer. After the experimental conditions were optimized, a linear relationship was obtained covering the linear range of 1.0–84 μmol L−1 with a correlation coefficient of 0.9981 and the detection limit (3σ/k) was 0.15 μmol L−1. The feasibility of the developed method was successfully evaluated through the determination of 2,4-DCP in real samples. This study provides a general strategy to fabricate highly-controllable core–shell imprinted polymer-contained QDs with highly selective recognition ability.  相似文献   

9.
High-quality cysteamine-coated CdTe quantum dots (CA-CdTe QDs) were successfully synthesized in aqueous phase by a facile one-pot method. Through hydroxylamine hydrochloride-promoted kinetic growth strategy, water-soluble CA-CdTe QDs could be obtained conveniently in a conical flask by a stepwise addition of raw materials. The photoluminescence quantum yield (PL QY) of the obtained QDs reached 9.2% at the emission peak of 520 nm. The optical property and the morphology of the QDs were characterized by UV–vis absorption spectra, photoluminescence spectra (PL) and transmission electron microscopy (TEM) respectively. Furthermore, the fluorescence of the resultant QDs was quenched by copper (II) (Cu2+) and mercury (II) (Hg2+) meanwhile. It is worthy of note that to separately detect Hg2+, cyanide ion could be used to eliminate the interference of Cu2+. Under the optimal conditions, the response was linearly proportional to the logarithm of Hg2+ concentration over the range of 0.08–3.33 μM with a limit of detection (LOD) of 0.07 μM.  相似文献   

10.
A colloidal suspension of nanostructured poly(N-butyl benzimidazole)-graphene sheets (PBBIns-Gs) was used to modify a gold electrode to form a three-dimensional PBBIns-Gs/Au electrode that was sensitive to hydrogen peroxide (H2O2) in the presence of acetic acid (AcOH). The positively charged nanostructured poly(N-butyl benzimidazole) (PBBIns) separated the graphene sheets (Gs) and kept them suspended in an aqueous solution. Additionally, graphene sheets (Gs) formed “diaphragms” that intercalated Gs, which separated PBBIns to prevent tight packing and enhanced the surface area. The PBBIns-Gs/Au electrode exhibited superior sensitivity toward H2O2 relative to the PBBIns-modified Au (PBBIns/Au) electrode. Furthermore, a high yield of glucose oxidase (GOD) on the PBBIns-Gs of 52.3 mg GOD per 1 mg PBBIns-Gs was obtained from the electrostatic attraction between the positively charged PBBIns-Gs and negatively charged GOD. The non-destructive immobilization of GOD on the surface of the PBBIns-Gs (GOD-PBBIns-Gs) retained 91.5% and 39.2% of bioactivity, respectively, relative to free GOD for the colloidal suspension of the GOD-PBBIns-Gs and its modified Au (GOD-PBBIns-Gs/Au) electrode. Based on advantages including a negative working potential, high sensitivity toward H2O2, and non-destructive immobilization, the proposed glucose biosensor based on an GOD-PBBIns-Gs/Au electrode exhibited a fast response time (5.6 s), broad detection range (10 μM to 10 mM), high sensitivity (143.5 μA mM−1 cm−2) and selectivity, and excellent stability. Finally, a choline biosensor was developed by dipping a PBBIns-Gs/Au electrode into a choline oxidase (ChOx) solution for enzyme loading. The choline biosensor had a linear range of 0.1 μM to 0.83 mM, sensitivity of 494.9 μA mM−1 cm−2, and detection limit of 0.02 μM. The results of glucose and choline measurement indicate that the PBBIns-Gs/Au electrode provides a useful platform for the development of oxidase-based biosensors.  相似文献   

11.
A facile green biosynthesis method has been successfully developed to prepare gold nanoparticles (AuNPs) of various core sizes (25 ± 7 nm) using a natural biomaterial, eggshell membrane (ESM) at ambient conditions. In situ synthesis of AuNPs-immobilized ESM is conducted in a simple manner by immersing ESM in a pH 6.0 aqueous solution of HAuCl4 without adding any reductant. The formation of AuNPs on ESM protein fibers is attributed to the reduction of Au(III) ions to Au(0) by the aldehyde moieties of the natural ESM fibers. Energy dispersive X-ray spectroscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, and X-ray powder diffraction unambiguously identify the presence of AuNPs on ESM. The effect of pH on the in situ synthesis of AuNPs on ESM has been investigated in detail. The pH of the gold precursor (HAuCl4) solution can influence the formation rate, dispersion and size of AuNPs on ESM. At pH ≤3.0 and ≥7.0, no AuNPs are observed on ESM while small AuNPs are homogeneously dispersed on ESM at pH 4.0-6.0. The optimal pH for AuNPs formation on ESM is 6.0. AuNPs/ESMs are used to immobilize glucose oxidase (GOx) for glucose biosensing. AuNPs on ESM can increase the enzyme activity of GOx. The linear response range of the glucose biosensor is 20 μM to 0.80 mM glucose with a detection limit of 17 μM (S/N = 3). The biosensor has been successfully applied to determine the glucose content in commercial glucose injections. Our work provides a very simple, non-toxic, convenient, and green route to synthesize AuNPs on ESM which is potentially useful in the biosensing field.  相似文献   

12.
Chen J  Zheng A  Chen A  Gao Y  He C  Kai X  Wu G  Chen Y 《Analytica chimica acta》2007,599(1):134-142
A gold-nanoparticles (Au NPs)-Rhodamine 6G (Rh6G) based fluorescent sensor for detecting Hg (II) in aqueous solution has been developed. Water-soluble and monodisperse gold nanoparticles (Au NPs) has been prepared facilely and further modified with thioglycolic acid (TGA). Free Rh6G dye was strongly fluorescent in bulk solution. The sensor system composing of Rh6G and Au NPs fluoresce weakly as result of fluorescence resonance energy transfer (FRET) and collision. The fluorescence of Rh6G and Au NPs based sensor was gradually recovered due to Rh6G units departed from the surface of functionalized Au NPs in the presence of Hg(II). Based on the modulation of fluorescence quenching efficiency of Rh6G-Au NPs by Hg(II) at pH 9.0 of teraborate buffer solution, a simple, rapid, reliable and specific turn-on fluorescent assay for Hg(II) was proposed. Under the optimum conditions, the fluorescence intensity of sensor is proportional to the concentration of Hg(II). The calibration graphs are linear over the range of 5.0 × 10−10 to 3.55 × 10−8 mol L−1, and the corresponding limit of detection (LOD) is low as 6.0 × 10−11 mol L−1. The relative standard deviation of 10 replicate measurements is 1.5% for 2.0 × 10−9 mol L−1 Hg(II). In comparison with conventional fluorimetric methods for detection of mercury ion, the present nanosensor endowed with higher sensitivity and selectivity for Hg(II) in aqueous solution. Mercury(II) of real environmental water samples was determined by our proposed method with satisfactory results that were obtained by atomic absorption spectroscopy (AAS).  相似文献   

13.
A novel glucose biosensor, based on the modification of well-aligned polypyrrole nanowires array (PPyNWA) with Pt nanoparticles (PtNPs) and subsequent surface adsorption of glucose oxidase (GOx), is described. The distinct differences in the electrochemical properties of PPyNWA–GOx, PPyNWA–PtNPs, and PPyNWA–PtNPs–GOx electrodes were revealed by cyclic voltammetry. In particular, the results obtained for PPyNWA–PtNPs–GOx biosensor showed evidence of direct electron transfer due mainly to modification with PtNPs. Optimum fabrication of the PPyNWA–PtNPs–GOx biosensor for both potentiometric and amperometric detection of glucose were achieved with 0.2 M pyrrole, applied current density of 0.1 mA cm−2, polymerization time of 600 s, cyclic deposition of PtNPs from −200 mV to 200 mV, scan rate of 50 mV s−1, and 20 cycles. A sensitivity of 40.5 mV/decade and a linear range of 10 μM to 1000 μM (R2 = 0.9936) were achieved for potentiometric detection, while for amperometric detection a sensitivity of 34.7 μA cm−2 mM−1 at an applied potential of 700 mV and a linear range of 0.1–9 mM (R2 = 0.9977) were achieved. In terms of achievable detection limit, potentiometric detection achieved 5.6 μM of glucose, while amperometric detection achieved 27.7 μM.  相似文献   

14.
We have developed a new fluorescent probe of thioglycolic acid (TGA)-capped CdTe quantum dots (QDs) complexed with a model drug, meso-tetrakis(N-methylpyridinium-4-yl)porphyrin (TMPyP) for detecting deoxyribonucleic acids (DNAs). This probe operates with an “Off–On” mode: TMPyP quenches the photoluminescence (PL) of QDs via a photo induced electron-transfer (PIET) process; the presence of DNA can break the QD/TMPyP complexation, interrupting the PIET process, and switch on the PL of QDs. Sensitive detection of DNA with the detection limit of 0.16 nM and a linear detection range of 0.25–6.0 nM are achieved. Importantly, this probe can be used to distinguish the binding modes of DNA–TMPyP interactions, exhibiting the DNA sequence-dependent PL recovery behaviors. The obtained binding constant for poly(dA)·poly(dT) is ∼3.30 × 107 L mol−1, which is approximately one order of magnitude larger than those for native DNAs and poly(dG)·poly(dC). Furthermore, the thymine bases preferential of the TMPyP–DNA interaction is proved by this probe.  相似文献   

15.
In this study, thioglycolic acid capped-CdTe quantum dots (QDs) were modified by polyethylenimine (PEI), and then combined with fluorescein isothiocyanate (FITC) to fabricate FITC–CdTe conjugates. The self-assembly of FITC, CdTe and PEI was ascribed to electrostatic interactions in aqueous solution. The resulting conjugates were developed toward two routes. In route one, ratiometric photoluminescence (PL) intensity of conjugates (IFITC/IQDs) was almost linear toward pH from 5.3 to 8.7, and a ratiometric PL sensor of pH was favorable obtained. In route two, firstly added S2− induced remarkable quenching of QDs PL peak (at the “OFF” state), which was restored due to following addition of Cd2+ (at the “ON” state). In the conjugates, successive introduction of S2− and Cd2+ hardly influenced on FITC PL peaks. According to this PL “OFF-ON” mode, a ratiometric PL method for the detection of Cd2+ was achieved. Experimental results confirmed that the IFITC/IQDs exhibited near linear proportion toward Cd2+ concentration in the range from 0.1 to 15 μM, and the limit of detection was 12 nM. Interferential experiments adequately testified that the proposed sensors of pH and Cd2+ were practicable in real samples and complex systems. In comparison with conventional analytical techniques, the ratiometric PL method was simple, rapid, economic and highly selective.  相似文献   

16.
A facile method was used to prepare hollow mesoporous TiO2 and Au@TiO2 spheres using polystyrene (PS) templates. Au nanoparticles (NPs) were simultaneously synthesized and attached on the surface of PS spheres by reducing AuCl4? ions using sodium citrate which resulted in the uniform deposition of Au NPs. The outer coating of titania via sol‐gel produced PS@Au@TiO2 core–shell spheres. Removing the templates from these core–shell spheres through calcination produced hollow mesoporous and crystalline Au@TiO2 spheres with Au NPs inside the TiO2 shell in a single step. Anatase spheres with double Au NPs layers, one inside and another outside of TiO2 shell, were also prepared. Different characterization techniques indicated the hollow mesoporous and crystalline morphology of the prepared spheres with Au NPs. Hollow anatase spheres with Au NPs indicated enhanced harvesting of visible light and therefore demonstrated efficient catalytic activity toward the degradation of organic dyes under the irradiation of visible light as compared to bare TiO2 spheres.  相似文献   

17.
We report a turn-on phosphorescence probe for detection of histidine based on Co2+-adsorbed N-acetyl-l-cysteine (NAC) capped Mn: ZnS quantum dots (QDs) which is directly synthesized by the hydrothermal method. The phosphorescence of NAC-Mn: ZnS QDs is effectively quenched by Co2+ attributing to the adsorption of Co2+ onto the surface of QDs with a concomitant in suppressing the recombination process of hole and electron of QDs. The phosphorescence of Co2+-adsorbed NAC-Mn: ZnS QDs can be recovered by binding of Co2+ with histidine. The quenching and regeneration of the phosphorescence of NAC-Mn: ZnS QDs have been studied in detail. The as-prepared QDs-based probe is applied to determine histidine with a linear range of 1.25–30 μM and a detection limit of 0.74 μM. The relative standard deviation for eleven repeat detections of 20 μM histidine is 0.65%. Co2+-adsorbed NAC-Mn: ZnS QDs show high sensitivity and good selectivity to histidine over other amino acids, metal ions and co-existing substances. The proposed QDs probe has been successfully applied to determination of histidine in human urine samples with good recoveries of 98.5–103%.  相似文献   

18.
Huang HY  Chen PY 《Talanta》2010,83(2):379-385
Nonenzymatic electrochemical determination of ethanol and glucose was respectively achieved using PdNi- and Pd-coated electrodes prepared by electrodeposition from the novel metal-free ionic liquid (IL); N-butyl-N-methylpyrrolidinium dicyanamide (BMP-DCA). BMP-DCA provided an excellent environment and wide cathodic limit for electrodeposition of metals and alloys because many metal chlorides could dissolve in this IL where the reduction potentials of Pd(II) and Ni(II) indeed overlapped, leading to the convenience of potentiostatic codeposition. In aqueous solutions, the reduction potentials of Pd(II) and Ni(II) are considerably separated. The bimetallic PdNi coatings with atomic ratios of ∼80/20 showed the highest current for ethanol oxidation reaction (EOR). Ethanol was detected by either cyclic voltammetry (CV) or hydrodynamic amperometry (HA). Using CV, the dependence of EOR peak current on concentration was linear from 4.92 to 962 μM with a detection limit of 2.26 μM (σ = 3), and a linearity was observed from 4.92 to 988 μM using HA (detection limit 0.83 μM (σ = 3)). The Pd-coated electrodes prepared by electrodeposition from BMP-DCA showed electrocatalytic activity to glucose oxidation and CV, HA, and square-wave voltammetry (SWV) were employed to determine glucose. SWV showed the best sensitivity and linearity was observed from 2.86 μM to 107 μM, and from 2.99 mM to 10.88 mM with detection limits of 0.78 μM and 25.9 μM (σ = 3), respectively. For glucose detection, the interference produced from ascorbic acid, uric acid, and acetaminophen was significantly suppressed, compared with a regular Pt disk electrode.  相似文献   

19.
A novel label-free amperometric immunosensor is proposed for the ultrasensitive detection of zearalenone (ZEN) based on mesoporous carbon (MC) and trimetallic nanorattles (core/shell particles with movable cores encapsulated in the shells). The nanorattles are composed of special Au-core and imperfect AgPt-shell structure (Au@AgPt). The Au@AgPt nanorattles are loaded onto the MC by physical adsorption. The structure of the Au@AgPt nanorattles was characterized by using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Energy dispersive X-ray spectroscopy (EDS) confirmed the composition of the synthesized nanorattles. Compared with monometallic and bimetallic nanoparticles (NPs), Au@AgPt nanorattles show a higher electron transfer rate due to the synergistic effect of the Au, Ag and Pt NPs. MC further improves the sensitivity of the immunosensor because of its extraordinarily large specific surface area, suitable pore arrangement and outstanding conductivity. The large specific surface area of MC and MC@Au@AgPt were characterized by the BET method. ZEN antibodies are immobilized onto the nanorattles via Ag–NH2 bonds and Pt–NH2 bonds. Cyclic voltammetry and square wave voltammetry were used to characterize the recognizability of ZEN. Under optimum experimental conditions, the proposed immunosensor exhibited a low detection limit (1.7 pg mL−1), a wide linear range (from 0.005 to 15 ng mL−1) as well as good stability, reproducibility and selectivity. The sensor can be used in clinical analysis.  相似文献   

20.
A novel fluorescent probe for Cu2+ determination based on the fluorescence quenching of glyphosate (Glyp)-functionalized quantum dots (QDs) was firstly reported. Glyp had been used to modify the surface of QDs to form Glyp-functionalized QDs following the capping of thioglycolic acid on the core–shell CdTe/CdS QDs. Under the optimal conditions, the response was linearly proportional to the concentration of Cu2+ between 2.4 × 10−2 μg mL−1 and 28 μg mL−1, with a detection limit of 1.3 × 10−3 μg mL−1 (3δ). The Glyp-functionalized QDs fluorescent probe offers good sensitivity and selectivity for detecting Cu2+. The fluorescent probe was successfully used for the determination of Cu2+ in environmental samples. The mechanism of reaction was also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号