首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 52 毫秒
1.
In this paper, the behavior of planar rigid-body mechanical systems due to the dynamic interaction of multiple revolute clearance joints is numerically studied. One revolute clearance joint in a multibody mechanical system is characterized by three motions which are: the continuous contact, the free-flight, and the impact motion modes. Therefore, a mechanical system with n-number of revolute clearance joints will be characterized by 3 n motions. A slider-crank mechanism is used as a demonstrative example to study the nine simultaneous motion modes at two revolute clearance joints together with their effects on the dynamic performance of the system. The normal and the frictional forces in the revolute clearance joints are respectively modeled using the Lankarani–Nikravesh contact-force and LuGre friction models. The developed computational algorithm is implemented as a MATLAB code and is found to capture the dynamic behavior of the mechanism due to the motions in the revolute clearance joints. This study has shown that clearance joints in a multibody mechanical system have a strong dynamic interaction. The motion mode in one revolute clearance joint will determine the motion mode in the other clearance joints, and this will consequently affect the dynamic behavior of the system. Therefore, in order to capture accurately the dynamic behavior of a multi-body system, all the joints in it should be modeled as clearance joints.  相似文献   

2.
In this work a comprehensive methodology for dynamic modeling and analysis of planar multibody systems with lubricated revolute joints is presented. In general, this type of mechanical systems includes journal-bearings in which the load varies in both magnitude and direction. The fundamental issues associated with the theory of lubrication for dynamically loaded journal-bearings are revisited that allow for the evaluation of the Reynolds equation for dynamic regime. This approach permits the derivation of the suitable hydrodynamic force laws that are embedded into the dynamics of multibody systems formulation. In this work, three different hydrodynamic force models are considered, namely the Pinkus and Sternlicht approach for long journal-bearings and the Frêne et al. models for both long and short journal-bearings. Results for a planar slider?Ccrank mechanism with a lubricated revolute joint between the connecting-rod and slider are presented and utilized to discuss the assumptions and procedures adopted throughout the present study. Different test scenarios are taken into account with the purpose of performing a comparative study for quantifying the effect of the clearance size, lubricant viscosity, input crank speed and hydrodynamic force model on the dynamic response of multibody systems with lubricated revolute joints. From the global results obtained from computational simulations, it can be concluded that the clearance size, the lubricant viscosity and the operating conditions play a key role in predicting the dynamic behavior of multibody systems.  相似文献   

3.
Ma  Jia  Qian  Linfang 《Nonlinear dynamics》2017,90(3):1907-1940
Nonlinear Dynamics - This paper presents a general procedure for dynamic modeling and simulation of planar multibody systems considering multiple revolute clearance joints. The normal contact force...  相似文献   

4.
A comprehensive combined numerical and experimental study on the dynamic response of a slider-crank mechanism with revolute clearance joints is presented and discussed in this paper to provide an experimental verification and validation of the predictive capabilities of the multibody clearance joint models. This study is supported in an experimental work in a test rig, which consists of a slider-crank mechanism with an adjustable radial clearance at the revolute joint between the slider and the connecting rod. The motion of the slider is measured with a linear transducer and an accelerometer. Dynamic tests at different operating crank speeds and with several clearance sizes are performed. The maximum slider acceleration, associated with the impact acceleration, is used as a measure of the impact severity. The obtained results demonstrate the dynamical behavior of a multibody mechanical system with a clearance joint. Finally, the correlation between the numerical and experimental results is presented and discussed leading to validated models of clearance revolute joints.  相似文献   

5.
Modeling of clearance joints plays an important role in the analysis and design of multibody mechanical systems. Based on the absolute nodal coordinate formulation (ANCF), a new computational methodology for modeling and analysis of planar flexible multibody systems with clearance and lubricated revolute joints is presented. A planar absolute nodal coordinate formulation based on the locking-free shear deformable beam element is implemented to discretize the flexible bodies. A continuous contact-impact model is used to evaluate the contact force, in which energy dissipation in the form of hysteresis damping is considered. A force transition model from hydrodynamic lubrication forces to dry contact forces is introduced to ensure continuity in the joint reaction force. A comprehensive study with different lubrication force models has also been carried out. The generalized-α method is used to solve the equations of motion and several efficient methods are incorporated in the proposed model. Finally, the methodology is validated by two numerical examples.  相似文献   

6.
A general methodology for dynamic modeling and analysis of multibody systems with multiple clearance joints is presented and discussed in this paper. The joint components that constitute a real joint are modeled as colliding bodies, being their behavior influenced by geometric and physical properties of the contacting surfaces. A continuous contact force model, based on the elastic Hertz theory together with a dissipative term, is used to evaluate the intrajoint contact forces. Furthermore, the incorporation of the friction phenomenon, based on the classical Coulomb’s friction law, is also discussed. The suitable contact-impact force models are embedded into the dynamics of multibody systems methodologies. An elementary mechanical system is used to demonstrate the accuracy and efficiency of the presented approach, and to discuss the main assumptions and procedures adopted. Different test scenarios are considered with the purpose of performing a parametric study for quantifying the influence of the clearance size, input crank speed, and number of clearance joints on the dynamic response of multibody systems with multiple clearance joints. Additionally, the total computation time consumed in each simulation is evaluated in order to test the computational accuracy and efficiency of the presented approach. From the main results obtained in this study, it can be drawn that clearance size and the operating conditions play a crucial role in predicting accurately the dynamic responses of multibody systems.  相似文献   

7.
This study is focused on dynamic modeling of planar multibody systems with multiple deep groove ball bearing joints, in which the radial clearance, contact deformation, and bearing kinematics are included. By using the approach presented, the variation of the joint reaction force and the dynamic load on each ball element in bearings can be simulated. The deep groove ball bearing joints are modeled by introducing a nonlinear force system, which takes into account the contact elastic deformations between the ball elements and the raceways. The contact force is calculated by the Hertzian contact deformation theory that accounts for the geometrical and material properties of the contacting bodies. A planar slider-crank mechanism with two deep groove ball bearing joints is chosen as an example to demonstrate the application of the methodologies presented in this paper. In this model, one bearing locates at the joint between the ground and crank, while the other one locates at the joint between the crank and connecting rod. By numerical calculation, the dynamic load distribution characteristics of bearings under real mechanism movement conditions are simulated. From the results, it can be concluded that the dynamic load on each rolling element varies differently and belongs to a variable load with the change of mechanism configuration. Load characteristic analysis is the foundation of developing research on the fatigue life and reliability of bearings. This study will provide a key mechanical support for the performance evaluation, dynamic design, and geometrical parameter optimization of the joint rolling element bearings.  相似文献   

8.
通过集成磨损计算与柔性多体动力学,对柔性系统中间隙铰接副部位的磨损进行了预测.基于绝对节点坐标方法(ANCF)建立了柔性部件的多体动力学模型,引入连续接触力模型计算间隙铰接副部分的接触力,并采用Archard磨损模型的迭代磨损计算程序预测磨损.为了得到在不同接触情况下的磨损系数,本文中采用了径向基神经网络处理试验数据.通过对含柔性连杆的曲柄滑块机构进行仿真计算,发现当考虑部件的柔性时,得到的间隙处的冲击力大幅降低,且预测的磨损量也略有降低,这种区别会随着仿真时间的增加而变得更加明显.  相似文献   

9.
This paper is concerned with the modeling of joints with clearance within the framework of finite element based dynamic analysis of nonlinear, flexible multibody systems. For actual joints, clearance, lubrication and friction phenomena can significantly affect the dynamic response of the system. In this work, the effects of clearance and lubrication are studied for revolute and spherical joints. The formulation is developed within the framework of energy preserving and decaying time integration schemes that provide unconditional stability for nonlinear, flexible multibody systems. Numerical examples are presented that demonstrate the efficiency and accuracy of the proposed approach. The importance of modeling structural damping and limited driving power are discussed.  相似文献   

10.
通过集成柔性多体动力学与磨损计算程序,提出了一种用于对柔性多体系统中间隙铰接副部位的磨损进行了预测的方法.基于绝对节点坐标方法(ANCF)建立了柔性部件的多体动力学模型,引入Lankanrani和Nikravesh提出的连续接触力模型计算间隙铰接副部分的法向接触力,采用Lu Gre摩擦模型计算切向摩擦力,并利用基于Archard模型的迭代计算程序计算磨损.为了提高计算效率,引入了并行计算策略.最后,通过对一个含柔性连杆的曲柄滑块机构机构进行仿真计算,发现当考虑部件的柔性时,得到的间隙处的冲击力会大幅降低,预测的磨损量也随之降低,并且随着机构柔性的增强,这种效果更为明显.  相似文献   

11.
The dynamic modeling and simulation of spatial rigid-multibody systems with lubricated spherical joints is the main purpose of the present work. This issue is of paramount importance in the analysis and design of realistic multibody mechanical systems undergoing spatial motion. When the spherical clearance joint is modeled as dry contact; i.e., when there is no lubricant between the mechanical elements which constitute the joint, a body-to-body (typically metal-to-metal) contact takes place. The joint reaction forces in this case are evaluated through a Hertzian-based contact law. A hysteretic damping factor is included in the dry contact force model to account for the energy dissipation during the contact process. The presence of a fluid lubricant avoids the direct metal-to-metal contact. In this situation, the squeeze film action, due to the relative approaching motion between the mechanical joint elements, is considered utilizing the lubrication theory associated with the spherical bearings. In both cases, the intra-joint reaction forces are evaluated as functions of the geometrical, kinematical, and physical characteristics of the spherical joint. These forces are then incorporated into a standard formulation of the system’s governing equations of motion as generalized external forces. A spatial four bar mechanism that includes a spherical clearance joint is considered here as an example. The computational simulations are carried out with and without the fluid lubricant, and the results are compared with those obtained when the system is modeled with perfect joints only. From the general results, it is observed that the system’s performance with lubricant effect presents fewer peaks in the kinematic and dynamic outputs, when compared with those from the dry contact joint model.  相似文献   

12.
应用BP神经网络建立了磨损率与接触应力、滑动速度和材料硬度之间的非线性关系模型,并对该网络模型进行了验证和测试,结果表明,训练良好的神经网络模型能够准确反映样本所蕴含的内在磨损规律,且具有较好的预测效果。基于非线性弹簧阻尼模型和修正的Coulomb摩擦力模型对含间隙曲柄滑块机构进行数值仿真分析,获得间隙机构运动副的接触应力和相对滑动速度,利用训练好的神经网络磨损模型对轴套的磨损进行迭代磨损预测分析,发现随着曲柄转数的增加,轴套表面一些特定位置处的磨损越来越严重,最终导致轴套表面出现非均匀磨损现象,其原因是间隙机构运转过程在一些特定位置处产生了较大接触应力和碰撞力。  相似文献   

13.
The main objective of this work is to present a computational and experimental study on the contact forces developed in revolute clearance joints. For this purpose, a well-known slider-crank mechanism with a revolute clearance joint between the connecting rod and slider is utilized. The intra-joint contact forces that are generated at these clearance joints are computed by considering several different elastic and dissipative approaches, namely those based on the Hertz contact theory and the ESDU tribology-based cylindrical contacts, along with a hysteresis-type dissipative damping. The normal contact force is augmented with the dry Coulomb’s friction force. In addition, an experimental apparatus is used to obtained some experimental data in order to verify and validate the computational models. From the outcomes reported in this paper, it is concluded that the selection of the appropriate contact force model with proper dissipative damping plays a significant role in the dynamic response of mechanical systems involving contact events at low or moderate impact velocities.  相似文献   

14.
Joint clearance and flexible links are two important factors that affect the dynamic behaviors of planar mechanical system. Traditional dynamics studies of planar mechanism rarely take into account both influence of revolute clearance and flexible links, which results in lower accuracy. And many dynamics studies mainly focus on simple mechanism with clearance, the study of complex mechanism with clearance is a few. In order to study dynamic behaviors of two-degree-of-freedom (DOF) complex planar mechanical system more precisely, the dynamic analyses of the mechanical system with joint clearance and flexibility of links are studied in this work. Nonlinear dynamic model of the 2-DOF nine-bar mechanical system with revolute clearance and flexible links is built by Lagrange and finite element method (FEM). Normal and tangential force of the clearance joint is built by the Lankarani–Nikravesh and modified Coulomb’s friction models. The influences of clearance value and driving velocity of the crank on the dynamic behaviors are researched, including motion responses of slider, contact force, driving torques of cranks, penetration depth, shaft center trajectory, Phase diagram, Lyapunov exponents and Poincaré map of clearance joint and slider are both analyzed, respectively. Bifurcation diagrams under different clearance values and different driving velocities of cranks are also investigated. The results show that clearance joint and flexibility of links have a certain impact on dynamic behavior of mechanism, and flexible links can partly decrease dynamic response of the mechanical system with clearance relative to rigid mechanical system with clearance.  相似文献   

15.
The numerical modeling of joints with a certain amount of clearance and a subsequent validation of the model are important for accurate multibody simulations. For such validated modeling, not only the kinematic constraints, but also the contact models, are important. If a joint has no clearance, it is assumed to be ideal. However, in real applications, there is frequently some clearance in the joints. Adding clearance and kinematic conditions to a pin-slot joint significantly increases the number of kinematic and contact parameters. Consequently, the resulting kinematics and the contact forces can vary significantly with regard to the selection of those parameters. This research covers the development of a validated model for a pin-slot clearance joint. Different kinematic constraints and contact models are discussed. The presented model is an experimentally validated one for a pin-slot clearance joint that is commonly used in safety-critical applications like electrical circuit breakers. Special attention is given to the Hertz, Kelvin–Voigt, Johnson, and Lankarani–Nikravesh contact models. When comparing different contact models within numerical approaches and comparing the results with experimental data, significant differences in the results were observed. With a validated model of a pin-slot clearance joint, a physically consistent numerical simulation was obtained.  相似文献   

16.
多体系统动力学中关节效应模型的研究进展   总被引:4,自引:0,他引:4  
在一般的多体系统动力学研究中认为运动关节是理想运动副. 然而,实际中的运动关节不仅含有间隙与摩擦,还有间隙引起的关节元素之间的接触碰撞、局部变形和磨损. 多体系统动力学中的关节效应不仅引起了系统的振动和噪声,减小了系统的可靠性和寿命,而且损失了系统的精度和稳定性. 为此,对近十几年多体系统动力学中关节效应的研究进行了详细分析,总结了关节效应中间隙运动学模型、接触力模型与磨损模型在多体系统动力学中的建模过程. 其中,着重分析了多体系统动力学中关节磨损效应的研究进展,并对常用的Reye'shypothesis 和Archard 磨损模型进行了比较,详细地分析了Archard 磨损模型的演变形式以及主要磨损参数(接触应力,接触面积和滑移距离),特别分析了关键磨损参数接触应力的建模方法,解释了基于Winkler 弹性基础理论在求解接触应力时遇到的困难. 另外,介绍了4 种间隙运动副(转动副、移动副、圆柱副和球面副) 的运动学模型. 分析了考虑关节磨损多体系统动力学模型的一般建模方法,并以平面五杆机构为例说明了其建模过程.最后,简要地展望了多体系统动力学中关节效应模型的发展趋势以及应用前景.   相似文献   

17.
The objective of this study is to investigate the effects of the Coulomb dry friction model versus the modified Coulomb friction model on the dynamic behavior of the slider-crank mechanism with a revolute clearance joint. The normal and tangential forces acting on the contact points between the journal and the bearing are described by using a Hertzian-based contact force model and the Coulomb friction models, respectively. The dynamic equations of the mechanism are derived based on the Lagrange equations of the first kind and the Baumgarte stabilization method. The frictional force is solved via the linear complementarity problem (LCP) algorithm and the trial-and-error algorithm. Finally, three numerical examples are given to show the influence of the two Coulomb friction models on the dynamic behavior of the mechanism. Numerical results show that due to the stick friction, the slider-crank mechanism may exhibit stick-slip motion and can balance at some special positions, while the mechanism with ideal joints cannot.  相似文献   

18.
王晓军  吕敬  王琪 《力学学报》2019,51(1):209-217
基于LuGre摩擦模型和线性互补问题(LCP)的数值算法,给出了具有双边约束含摩擦滑移铰平面多体系统动力学的数值算法.首先,根据滑移铰的特点,当间隙充分小时,将其视为双边约束,给出了滑移铰中滑道作用于滑块上的法向接触力的互补关系;LuGre摩擦模型能有效地描述机械系统中的黏滞与滑移运动,将该模型用于描述滑块与滑道间的摩擦力.其次,结合Baumgarte约束稳定化方法,应用第一类Lagrange方程,建立了该多体系统的动力学方程,给出了Lagrange乘子与滑移铰中作用于滑块上的法向接触力的关系式.然后,将滑块与滑道间多种接触状态的判断以及作用于滑块上的法向接触力的计算转换为线性互补问题的求解,并用常微分方程的数值算法求解该多体系统的动力学方程.最后,通过数值仿真算例揭示了滑移铰中滑块的黏滞与滑移现象,以及滑块在滑道内的多种接触状态;另外,在文中分别采用Coulomb干摩擦模型和LuGre摩擦模型,对算例中的某些工况进行了数值仿真,并且分别用本文方法得到的数值仿真结果与已有方法得到的数值仿真结果对比,表明了本文给出的方法的有效性.   相似文献   

19.
A computer based formulation for the analysis of mechanical systems is investigated as a feasible method to predict the impact response of complex structural systems. A general methodology for the dynamic analysis of rigid-flexible multibody systems using a number of redundant Cartesian coordinates and the method of the Lagrange multipliers is presented. The component mode synthesis is then used to reduce the number of flexible degrees of freedom. In many impact situations, the individual structural members are overloaded giving rise to plastic deformations in highly localized regions, called plastic hinges. This concept is used by associating revolute nonlinear actuators with constitutive relations corresponding to the collapse behavior of the structural components. The contact of the system components is described using a continuous force model based on the Hertz contact law with hysteresis damping. The effect and importance of structural damping schemes in flexible bodies are also addressed here. Finally, the validity of this methodology is assessed by comparing the results of the proposed models with those obtained in different experimental tests where: a beam collides transversally with a rigid block; a torque box impacts a rigid barrier.  相似文献   

20.
Clearance as a real joint characteristic leads to deviation from desired trajectory in articulated mechanisms. This phenomenon makes the kinematic and dynamic performances of the mechanism worse. In this study, kinematic analysis of a Jansen’s mechanism used in a walking machine is performed. The model mechanism having two revolute joints with clearance is investigated for the trajectory analysis of the output link. It is clear that the mechanism’s trajectory is very sensitive to the clearance joint characteristics even if the clearance size is small. The adaptive network-based fuzzy inference system (ANFIS) is used to model the characteristics of joints with clearance. By using the suitable design variables and constraints, minimization of the trajectory errors arising from clearance is considered as an optimization problem. Optimization techniques are used to solve this problem for adjusting the optimum values of design variables. The obtained link dimensions show the success of the proposed modeling and optimization approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号