首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
用密度泛函理论(DFT)分析了NaP4及其正负离子的低级电子态的平衡结构、振动频率、能量、原子化能、绝热电子亲合能、绝热离子势等, 并与实验所得的阴离子光电子能谱进行比较. 根据计算结果与实验所得的激发能进行比较, 对NaP-4的阴离子光电子能谱中的峰进行了合理的归属.  相似文献   

2.
Mixed CH(4)/CF(4) clusters as well as pure clusters of CF(4) were produced by adiabatic expansion and studied by carbon 1s (C1s) X-ray photoelectron spectroscopy. Evidence is presented that CH(4) and CF(4) do indeed form binary clusters in CH(4)/CF(4) coexpansion experiments and that these clusters exhibit radial structure; i.e., CF(4) is primarily found in the bulk. The interpretation of the photoelectron spectra is supported by calculations of C1s ionization energies based on theoretical clusters models.  相似文献   

3.
We have developed an analytical approach for computing Franck‐Condon integrals (FCIs) of harmonic oscillators (HOs) with arbitrary dimensions in which the mode‐mixing Duschinsky effect is taken into account. A general formula of FCIs of HOs was obtained and was applied to study the photoelectron spectroscopy of vinyl alcohol and ovalene (C32H14). The equilibrium geometries, harmonic vibrational frequencies and normal modes of vinyl alcohol, ovalene, and their cations were computed at the B3LYP/aug‐cc‐pVTZ or the B3LYP/6‐31G(d) level, from which Franck‐Condon factors were calculated and photoelectron spectra were simulated. The adiabatic ionization energies of vinyl alcohol were also computed by extrapolating the CCSD(T) energies to the complete basis set limit with aug‐cc‐pVXZ (X = D, T, Q, 5). The simulated photoelectron spectra of both vinyl alcohol and ovalene are in agreement with the experiments. The computed adiabatic ionization energies of syn‐ and anti‐vinyl alcohol are in consistent with the experiment within 0.008 eV and 0.014 eV, respectively. We show, for the first time, that the analytical approach of computing FCIs is also efficient and promising for the studies of vibronic spectra of macrosystems. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
Zwitterions are critically important in many biological transformations and are used in numerous chemical processes. The consequences of electrostatic effects on reactivity and physical properties, however, are largely unknown. In this work, we report the results of negative ion photoelectron spectra of nine isomeric pyridinium dicarboxylate zwitterions and three nonzwitterionic methoxycarbonylpyridine carboxylate isomers (-O(2)CPyrCO(2)CH(3)). Information about the intramolecular electrostatic interactions was directly obtained from the photoelectron spectra. The adiabatic and vertical detachment energies were measured and understood in terms of intramolecular Coulombic forces. Calculations at the B3LYP and CCSD(T) level were performed and compared to the experimental electron binding energies. Structures, relative stabilities, and the electron detachment sites also were obtained from the calculations.  相似文献   

5.
A home-made magnetic-bottle time-of-flight anion photoelectron spectrometer(PES)for the investigation of binary metal cluster geometry and electron structure is described. The photoelectron spectrometer is installed near the first space focus of home-made reflectron time of flight mass spectrometer(RTOFMS),coupled with laser ablation,pulse supersonic molecular carrier gas cluster source. The magnetic-bottle photoelectron spectrometer's resolution is about 0. 1 eV for 1 eV photoelectrons. The adiabatic electron affinity energies of neutral clusters and some features relative to their excited states can be obtained from the spectra,i. e. ,from the anion's spectra,not only the features of the anion but also the neutral clusters' features can be investigated. The detailed design,construction,and operation of the new apparatus are presented. And studied PbM-(M = Cu,Ag,Au)binary metal cluster anions,the results give clear diagram about their structures and the bond interactions. The adiabatic electron affinity energies obtained by the photoelectron spectrometer agree well with the calculated results using relativistic density functional theory(DFT)method. It show that this anion photoelectron spectrometer can be well used in studying binary metal cluster anions in the experiment condition.  相似文献   

6.
We present low-energy velocity map photoelectron imaging results for bare and Ar-solvated 1-nitropropane and 1-nitrobutane anions. We report the adiabatic electron affinity of 1-nitropropane as (223 ± 6) meV and that of 1-nitrobutane as (240 ± 6 meV). The vertical detachment energies of these two species are found to be (0.92 ± 0.05) and (0.88 ± 0.05) eV, respectively. The photoelectron spectra are discussed in the framework of Franck-Condon simulations based on density functional theory. We observe unusual resonances in the photoelectron spectra of both ions under study, whose kinetic energy is independent of the photon energy of the detaching radiation. We discuss possible origins of these resonances as rescattering phenomena, consistent with the experimental photoelectron angular distributions.  相似文献   

7.
Calculations of Franck-Condon factors are crucial for interpreting vibronic spectra of molecules and studying nonradiative processes. We have developed a new method for calculating Franck-Condon factors of multidimensional harmonic oscillators including the Duschinsky effect. Closed-form formulas of two-, three-, and four-dimensional Franck-Condon factors were derived straightforwardly by using the properties of Hermite polynomials and Gaussian integrals. This new method was applied to study the photoelectron spectra of H(2)O(+)(B (2)B(2)) and D(2)O(+)(B (2)B(2)), whose equilibrium geometries and harmonic vibrational frequencies were calculated by using the coupled cluster singles and doubles with perturbative triples [CCSD(T)] method together with the basis sets of 6-311++G(3df,2pd) and aug-cc-pVTZ. The adiabatic ionization energies were computed by using the CCSD(T) method extrapolated to the complete basis set limit with aug-cc-pVXZ (X=D,T,Q,5). It was found that the simulated photoelectron spectra were mainly composed of nu(2) progressions and the combination bands of nu(1) and nu(2), whereas pure nu(1) transitions should be too weak to be observable, contrary to the literature reports. It was also found that the first discernible peak in the experimental photoelectron spectra did not correspond to the adiabatic transition. The adiabatic ionization energies of H(2)O(+)(B (2)B(2)) and D(2)O(+)(B (2)B(2)) are proposed to be 16.78 and 16.83 eV, about 0.40 and 0.58 eV lower than the best experimental values, respectively. Conversely, the calculated ionization energies are in agreement with the proposed values within 0.02 eV.  相似文献   

8.
First adiabatic and vertical ionization energies were calculated by the density functional method using Becke's correlated functional for water, ammonia, the silyl radical, five-membered heterocycles, and naphtalene. The structure of the ionic ground state and that of the neutral was optimized separately. The calculated ionization energies and harmonic frequencies are in acceptable agreement with the observed values. The calculated geometrical changes are in agreement with the information deduced from the photoelectron spectra. © 1997 John Wiley & Sons, Inc.  相似文献   

9.
The relative energies of several conformations of the tryptophol cation are determined by zero kinetic energy (ZEKE) photoelectron spectroscopy and photoionization efficiency measurements. Recently published high-resolution electronic spectroscopy on the neutral species determined the absolute configuration of the different conformers in the S1 spectrum. These assignments are utilized in the photoelectron experiments by pumping through conformer specific S1 resonances yielding ZEKE spectra of the specific, assigned conformations. The adiabatic ionization of one specific conformation is definitively determined, and two others are estimated. The photoelectron spectra, coupled with calculations, reveal that structural changes upon ionization are dominated by interactions of the hydroxyl group with the changes of electronic structure in the aromatic system.  相似文献   

10.
Signorell R  Merkt F 《Faraday discussions》2000,(115):205-28; discussion 303-30
High resolution pulsed-field-ionization (PFI) zero-kinetic-energy (ZEKE) photoelectron spectroscopy has been used to record the photoelectron spectra of CH4, CDH3, CD2H2 and CD4. The observed extensive progression of rotationally resolved transitions between 100,800 cm-1 and 104,100 cm-1 reveals for the first time the complex energy level structure of the methane cation. The high resolution enabled the determination of accurate values for the adiabatic ionization potentials of the different isotopomers. Based on a simple one-dimensional model for the pseudorotation in the different isotopomers, progress has been made towards the understanding of the Jahn-Teller effect at low energies. The static Jahn-Teller distortion in the ion could be determined directly from the vibrationless photoelectron transition in CD2H2. The analysis of the rotational structure in this spectrum with a rigid rotor model leads to an approximate experimental C2v structure. The dynamics of the other methane isotopomers near the adiabatic ionization potentials is dominated by large amplitude vibrational motions between equivalent structures. The corresponding ground state tunneling motions takes place on a picosecond time scale.  相似文献   

11.
The photoelectron spectra of eight 4 π-electron hydrocarbons and their tricarbonyl complexes have been measured. From these spectra the perturbation energies of the π orbitals introduced by the tricarbonyliron moiety have been determined. These perturbation energies are 0.89 ± 0.07 and 0.22 ± 0.06 eV for the first and second π orbitals, respectively. Given these perturbation energies and the photoelectron spectra of the tricarbonyliron complexes of cyclobutadiene and trimethylenemethane, π-ionization energies for the two transients, cyclobutadiene (8.29 and 11.95 eV) and trimethylenemethane (8.36 and 11.79 eV), have been predicted.  相似文献   

12.
The reactions between lead vapored by laser ablation and different aromatic molecules (C6H6, C5H5N, C4H4O, or C4H5N) seeded in argon carrier gas were studied by a reflectron time-of-flight mass spectrometer (RTOF-MS) with a photoelectron spectrometer. The adiabatic electron affinities (EAs) of the dominant anionic products PbmC6H5(-), Pb(m)C5H4N(-) (m = 1-4) and Pb(m)C4H3 (-), Pb(m)C4H4N(-) (m = 1-3) dehydrogenated complexes are obtained from the photoelectron spectra with 308 and 193 nm photon, respectively. It is found that the EAs of Pb(m)C4H4N are higher than those of Pb(m)C6H5, Pb(m)C5H4N, and Pb(m)C4H3O with the same metal number m. The possible structures for Pb(m)C4H4N(-) complexes were calculated with density functional theory (DFT) and the most stable structure was confirmed. The adiabatic detachment energies for the most stable structure were in agreement with the experimental PES results. The calculated density of state (DOS) agrees with the experimental PES spectrum well. It was confirmed by the theoretical calculations that the C4H4N group bonds on lead clusters through the Pb-N sigma bond.  相似文献   

13.
Threshold photoelectron spectra (TPESs) were obtained for naphthalene, anthracene, pyrene, 1,2-dihydronaphthalene, and 9,10-dihydroanthracene using imaging photoelectron photoion coincidence spectroscopy, from threshold to a photon energy of ~20 eV. Outer valence Green's function calculations at the OVGF∕cc-pVTZ level of theory were used to assign molecular orbitals to the observed TPES features. There is generally good agreement between the predicted and observed bands. Threshold regions for each molecule exhibit vibrational structure which is readily assigned based on previous PES studies. While the measured adiabatic ionization energies (IE(a)) for naphthalene, anthracene, and pyrene are in good agreement with previous works, new values are reported for the two dihydro species (1,2-dihydronaphthalene, 8.010 ± 0.010 eV and 9,10-dihydroanthracene, 8.335 ± 0.010 eV). A comparison is also made with the G3∕∕B3LYP composite method, which consistently overestimates the IE values by 0.06-0.09 eV. The double ionization energies for anthracene and pyrene have been measured to be 19.3 ± 0.2 and 19.8 ± 0.2 eV, respectively.  相似文献   

14.
Angle-resolved photoelectron (PE) spectra were recorded for IF and I. These were prepared as primary and secondary products of the F + CH2I2 reaction. PE spectra were recorded with different IF-to-I ratios to evaluate the relative intensities of IF and I photoelectron bands where their bands were overlapped. Improved values were obtained for the vertical and adiabatic ionization energies of the IF(+)(X(2)Pi(3/2)) <-- IF(X(1)sigma(+)) and IF(+)((2)Pi(1/2)) <-- IF(X(1)sigma(+)) ionizations and for the spectroscopic constants omega(e) and omega(e)ex(e) for the two IF ionic states X(2)Pi(3/2) and (2)Pi(1/2). Equilibrium bond lengths r(e) of these IF ionic states were derived from the experimental relative intensities of the vibrational components and calculated Franck-Condon factors. Threshold photoelectron (TPE) spectra were also recorded under the same reaction conditions. On comparing the TPE and PE spectra, the contributions from atomic iodine were much more intense in the TPE spectra. No difference was seen between the vibrational envelopes of the two observed IF bands, and no extra structure was seen associated with the TPE bands of IF as has been observed in TPE spectra of other diatomic halogens. The extra features that were observed in the TPE spectra can be assigned to contributions from autoionization of known I Rydberg states.  相似文献   

15.
The copper-monomethylamine and -dimethylamine complexes were produced in a supersonic jet and examined using single-photon zero kinetic energy (ZEKE) photoelectron spectroscopy and theoretical calculations. The adiabatic ionization potentials (I.P.) of the complexes and vibrational frequencies of the corresponding ions were measured from their ZEKE spectra. The equilibrium geometries, binding energies, and vibrational frequencies of the neutral and ionized complexes were obtained from MP2 and B3LYP calculations. The observed vibrational frequencies of the ionic complexes were well-reproduced by both calculations, whereas the Franck-Condon intensity patterns of the spectra were simulated better by MP2 than B3LYP. The observed I.P. and vibrational frequencies of the Cu-NH(n)(CH3)(3-n) (n = 0-3) complexes were compared, and methyl substitution effects on their ZEKE spectra were discussed.  相似文献   

16.
The valence shell electronic structures of methylhydrazine (CH(3)NHNH(2)), 1,1-dimethylhydrazine ((CH(3))(2)NNH(2)) and tetramethylhydrazine ((CH(3))(4)N(2)) have been studied by recording threshold and conventional (kinetic energy resolved) photoelectron spectra. Ab initio calculations have been performed on ammonia and the three methyl substituted hydrazines, with the structures being optimized at the B3-LYP/6-31+G(d) level of theory. The ionization energies of the valence molecular orbitals were calculated using the Green's function method, allowing the photoelectron bands to be assigned to specific molecular orbitals. The ground-state adiabatic and vertical ionization energies, as determined from the threshold photoelectron spectra, were IE(a) = 8.02 +/- 0.16 eV and IE(v) = 9.36 +/- 0.02 eV for methylhydrazine, IE(a) = 7.78 +/- 0.16 eV and IE(v) = 8.86 +/- 0.01 eV for 1,1-dimethylhydrazine and IE(a) = 7.26 +/- 0.16 eV and IE(v) = 8.38 +/- 0.01 eV for tetramethylhydrazine. Due to the large geometry change that occurs upon ionization, these IE(a) values are all higher than the true thresholds. New features have been observed in the inner valence region and these have been compared with similar structure in the spectrum of hydrazine. The effect of resonant autoionization on the threshold photoelectron yield is discussed. New heats of formation (Delta(f)H) are proposed for the three hydrazines on the basis of G3 calculations: 107, 94, and 95 kJ/mol for methylhydrazine, 1,1-dimethyhydrazine and tetramethylhydrazine, respectively. The previously reported Delta(f)H for tetramethylhydrazine is shown to be erroneous.  相似文献   

17.
Rotationally resolved pulsed-field-ionization zero-kinetic-energy photoelectron spectra of the X-->X+ transition in ethylene and ethylene-d4 have been recorded at a resolution of 0.09 cm(-1). The spectra provide new information on the large amplitude torsional motion in the cationic ground state. An effective one-dimensional torsional potential was determined from the experimental data. Both C2H4+ and C2D4+ exhibit a twisted geometry, and the lowest two levels of the torsional potential form a tunneling pair with a tunneling splitting of 83.7(5) cm(-1) in C2H4+ and of 37.1(5) cm(-1) in C2D4+. A model was developed to quantitatively analyze the rotational structure of the photoelectron spectra by generalizing the model of Buckingham, Orr, and Sichel [Philos. Trans. R. Soc. London, Ser. A 268, 147 (1970)] to treat asymmetric top molecules. The quantitative analysis of the rotational intensity distributions of allowed as well as forbidden vibrational bands enabled the identification of strong vibronic mixing between the X+ and A+ states mediated by the torsional mode nu(4) and a weaker mixing between the X+ and B+ states mediated by the symmetric CH2 out-of-plane bending mode nu7. The vibrational intensities could be accounted for quantitatively using a Herzberg-Teller-type model for vibronic intensity borrowing. The adiabatic ionization energies of C2H4 and C2D4 were determined to be 84 790.42(23) cm(-1) and 84 913.3(14) cm(-1), respectively.  相似文献   

18.
HeI photoelectron spectra of a supersonic jet of methanol vapor have been obtained by using the temperature-controlled supersonic nozzle beam photoelectron spectrometer recently constructed in our laboratory. A HeI spectrum attributable to the methanol dimer (CH3OH)2 has been deduced by spectrum stripping. The first ten vertical ionization energies and the first adiabatic ionization energy of (CH3OH)2 have been determined from the stripped spectrum. Ab initio SCF MO calculations of ionization energies have also been carried out for (CH3OH)2 on the basis of Koopmans' theorem. The lower bound of the dissociation energy of (CH3OH)2+ has been estimated to be 1.2 ± 0.2 eV from the adiabatic ionization energies of the monomer and dimer. The equilibrium structure of (CH3OH)2 is also discussed.  相似文献   

19.
A model for simulating photoelectron spectra of the triatomic van der Waals complexes containing stable atomic anion and diatomic molecule is proposed and applied to the Cl(-)...H(2) and Cl(-)...D(2) anions. The model assumes adiabatic separation of the electronic and nuclear motions and localization of the photodetachment act at the atomic chromophore. Under these approximations, the electronic transition dipole moment matrix elements are evaluated using the atoms-in-molecule approach and explicit expressions for the rovibrational line strength factors are derived. The energies and intensities of a number of rovibronic photoelectron transitions are calculated for the Cl(-)...H(2) and Cl(-)...D(2) anions within the adiabatic bender model, i.e., with the full separation of the vibrational motions, whereas the simulations of the broad spectral envelopes are performed using the equilibrium conditions, asymmetric line shape function, and two choices of the relative abundances of the para- and ortho-forms of the complex. The simulations reproduce experimental spectra reasonably well allowing for their unambiguous assignment in terms of vibronic transitions fully consistent with the previous time-dependent calculations. Agreement with the previous theoretical works, manifestations of non-Franck-Condon effects, and implications to the assessment of the neutral potential energy surfaces are discussed.  相似文献   

20.
The pyridyl-lead complexes [Pb(m)-C5H4N](-) (m = 1-4), which are produced from the reactions between lead clusters formed by laser ablation and the pyridine molecules seeded in argon carrier gas, are studied by photoelectron (PE) spectra and density functional theory. The adiabatic electron affinity (EA) of [Pb(m)C5H4N](-) is obtained from PE spectra at photon energies of 308 and 193 nm. Theoretical calculation is carried out to elucidate their structures and bonding modes. A variety of geometries for the isomers are optimized to search for the lowest-energy geometry. By comparing the theoretical results, including the EA and simulated density of state spectra, with the experimental determination, the lowest-energy structures for each species are obtained. The following analysis of the molecular orbital composition provides the evidence that the pyridyl binds on lead clusters through the Pb-C sigma bond. Moreover, there is an apparent spin-state transition from triplet state toward singlet state for the ground-state structure of [Pb(m)C5H4N](-) with an increase of lead cluster.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号