首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
曾现洋  倪国喜 《计算物理》2016,33(3):266-272
利用流体力学方程的积分形式给出非结构移动网格上离散格式,利用自适应移动网格方法移动网格,进而得到网格速度.对振动Naca0012翼型问题,分三种类型确定网格速度,再结合Riemann问题的解法器构造数值通量,得到移动网格单元上新的物理量.数值实验表明这种格式同时具有高效、高分辨率的特点.  相似文献   

2.
肖敏  徐喜华  倪国喜 《计算物理》2020,37(2):127-139
提出一种在自由重映移动网格下的广义黎曼问题方法模拟反应流.该方法基于显式的自由重映移动网格广义黎曼问题的解.为保证在时间和空间上的高精度,应用广义黎曼问题方法构造数值通量.为保证反应区的高分辨率,采用变分法生成自适应移动网格.该方法不仅能够保证网格质量,而且能有效地避免任意拉格朗日—欧拉方法中由于显式重映过程而带来的数值误差.包括CJ爆轰及不稳定爆轰的数值实验说明该格式的精确性和鲁棒性,证明这种移动网格下的二阶广义黎曼问题方法可以较好地捕捉反应流的间断与光滑结构.  相似文献   

3.
We present the development of a sliding mesh capability for an unsteady high order (order ? 3) h/p Discontinuous Galerkin solver for the three-dimensional incompressible Navier–Stokes equations. A high order sliding mesh method is developed and implemented for flow simulation with relative rotational motion of an inner mesh with respect to an outer static mesh, through the use of curved boundary elements and mixed triangular–quadrilateral meshes.A second order stiffly stable method is used to discretise in time the Arbitrary Lagrangian–Eulerian form of the incompressible Navier–Stokes equations. Spatial discretisation is provided by the Symmetric Interior Penalty Galerkin formulation with modal basis functions in the xy plane, allowing hanging nodes and sliding meshes without the requirement to use mortar type techniques. Spatial discretisation in the z-direction is provided by a purely spectral method that uses Fourier series and allows computation of spanwise periodic three-dimensional flows. The developed solver is shown to provide high order solutions, second order in time convergence rates and spectral convergence when solving the incompressible Navier–Stokes equations on meshes where fixed and rotating elements coexist.In addition, an exact implementation of the no-slip boundary condition is included for curved edges; circular arcs and NACA 4-digit airfoils, where analytic expressions for the geometry are used to compute the required metrics.The solver capabilities are tested for a number of two dimensional problems governed by the incompressible Navier–Stokes equations on static and rotating meshes: the Taylor vortex problem, a static and rotating symmetric NACA0015 airfoil and flows through three bladed cross-flow turbines. In addition, three dimensional flow solutions are demonstrated for a three bladed cross-flow turbine and a circular cylinder shadowed by a pitching NACA0012 airfoil.  相似文献   

4.
Aiming at complex configuration and large deformation, an efficient hybrid method for dynamic mesh generation is presented in this paper, which is based on Radial Basis Functions (RBFs) and Delaunay graph mapping. Based on the computational mesh, a set of very coarse grid named as background grid is generated firstly, and then the computational mesh can be located at the background grid by Delaunay graph mapping technique. After that, the RBFs method is applied to deform the background grid by choosing partial mesh points on the boundary as the control points. Finally, Delaunay graph mapping method is used to relocate the computational mesh by employing area or volume weight coefficients. By applying different dynamic mesh methods to a moving NACA0012 airfoil, it can be found that the RBFs-Delaunay graph mapping hybrid method is as accurate as RBFs and is as efficient as Delaunay graph mapping technique. Numerical results show that the dynamic meshes for all test cases including one two-dimensional (2D) and two three-dimensional (3D) problems with different complexities, can be generated in an accurate and efficient manner by using the present hybrid method.  相似文献   

5.
An anelastic atmospheric flow solver has been developed that combines semi-implicit non-oscillatory forward-in-time numerics with a solution-adaptive mesh capability. A key feature of the solver is the unification of a mesh adaptation apparatus, based on moving mesh partial differential equations (PDEs), with the rigorous formulation of the governing anelastic PDEs in generalised time-dependent curvilinear coordinates. The solver development includes an enhancement of the flux-form multidimensional positive definite advection transport algorithm (MPDATA) — employed in the integration of the underlying anelastic PDEs — that ensures full compatibility with mass continuity under moving meshes. In addition, to satisfy the geometric conservation law (GCL) tensor identity under general moving meshes, a diagnostic approach is proposed based on the treatment of the GCL as an elliptic problem. The benefits of the solution-adaptive moving mesh technique for the simulation of multiscale atmospheric flows are demonstrated. The developed solver is verified for two idealised flow problems with distinct levels of complexity: passive scalar advection in a prescribed deformational flow, and the life cycle of a large-scale atmospheric baroclinic wave instability showing fine-scale phenomena of fronts and internal gravity waves.  相似文献   

6.
The non-equilibrium Richards equation is solved using a moving finite element method in this paper. The governing equation is discretized spatially with a standard finite element method, and temporally with second-order Runge–Kutta schemes. A strategy of the mesh movement is based on the work by Li et al. [R.Li, T.Tang, P.W. Zhang, A moving mesh finite element algorithm for singular problems in two and three space dimensions, Journal of Computational Physics, 177 (2002) 365–393]. A Beckett and Mackenzie type monitor function is adopted. To obtain high quality meshes around the wetting front, a smoothing method which is based on the diffusive mechanism is used. With the moving mesh technique, high mesh quality and high numerical accuracy are obtained successfully. The numerical convergence and the advantage of the algorithm are demonstrated by a series of numerical experiments.  相似文献   

7.
This paper describes extensive computer-based analytical studies on the details of unsteady flow behavior around airfoils subjected to flow induced vibration in turbo-machinery. To consider the time-dependent motions of airfoils, a complete Navier-Stokes solver incorporating a moving mesh based on an analytic solution of motion equation for airfoil translation and rotation was applied. The drag and lift coefficients for the cases of stationary airfoils and airfoils subjected to flow induced vibration were examined. From the numerical results in non-coupling case as out of consideration of the airfoil motion, it was found that the separation vortex consisted of large-scale rolls with axes in the span direction, and rib substructures with axes in the stream direction. In the coupling simulation including the airfoil motion, both the translation and the rotation displacement were gradually increased when the airfoil translation and rotation natural frequencies synchronize exactly with the oscillation frequency of the fluid force. In addition, the transformation from complex structure with rolls and ribs to two-dimensional aspect of only rolls could be visualized in three-dimensional simulation.  相似文献   

8.
We describe a cell-centered Godunov scheme for Lagrangian gas dynamics on general unstructured meshes in arbitrary dimension. The construction of the scheme is based upon the definition of some geometric vectors which are defined on a moving mesh. The finite volume solver is node based and compatible with the mesh displacement. We also discuss boundary conditions. Numerical results on basic 3D tests problems show the efficiency of this approach. We also consider a quasi-incompressible test problem for which our nodal solver gives very good results if compared with other Godunov solvers. We briefly discuss the compatibility with ALE and/or AMR techniques at the end of this work. We detail the coefficients of the isoparametric element in the appendix.  相似文献   

9.
Discontinuous Galerkin spectral element approximations on moving meshes   总被引:1,自引:0,他引:1  
We derive and evaluate high order space Arbitrary Lagrangian–Eulerian (ALE) methods to compute conservation laws on moving meshes to the same time order as on a static mesh. We use a Discontinuous Galerkin Spectral Element Method (DGSEM) in space, and one of a family of explicit time integrators such as Adams–Bashforth or low storage explicit Runge–Kutta. The approximations preserve the discrete metric identities and the Discrete Geometric Conservation Law (DGCL) by construction. We present time-step refinement studies with moving meshes to validate the approximations. The test problems include propagation of an electromagnetic gaussian plane wave, a cylindrical pressure wave propagating in a subsonic flow, and a vortex convecting in a uniform inviscid subsonic flow. Each problem is computed on a time-deforming mesh with three methods used to calculate the mesh velocities: from exact differentiation, from the integration of an acceleration equation, and from numerical differentiation of the mesh position.  相似文献   

10.
Based on the field velocity method, a novel approach for simulating unsteady pitching and plunging motion of an airfoil is presented in this paper. Responses to pitching and plunging motions of the airfoil are simulated under different conditions. The obtained results are compared with those of moving grid method and good agreement is achieved. In the conventional field velocity method, the Euler solver is usually used to simulate the movement of the airfoil. However, when viscous effect is considered, unsteady Navier-Stokes equations have to be solved and the viscous flux correction must be taken into account. In this work, the viscous flux correction is introduced into the conventional field velocity method when non-uniform grid speed distribution is occurred. Numerical experiments for the flow around NACA0012 airfoil showed that the proposed approach can well simulate viscous moving boundary flow problems.  相似文献   

11.
Dynamic moving interfaces are central to many scientific, engineering, and graphics applications. In this paper, we introduce a novel method for moving surface meshes, called the face offsetting method, based on a generalized Huygens’ principle. Our method operates directly on a Lagrangian surface mesh, without requiring an Eulerian volume mesh. Unlike traditional Lagrangian methods, which move each vertex directly along an approximate normal or user-specified direction, our method propagates faces and then reconstructs vertices through an eigenvalue analysis locally at each vertex to resolve normal and tangential motion of the interface simultaneously. The method also includes techniques for ensuring the integrity of the surface as it evolves. Face offsetting provides a unified framework for various dynamic interface problems and delivers accurate physical solutions even in the presence of singularities and large curvatures. We present the theoretical foundation of our method, and also demonstrate its accuracy, efficiency, and flexibility for a number of benchmark problems and a real-world application.  相似文献   

12.
This study examines the use of stationary Cartesian mesh for steady and unsteady flow computations. The surface boundary conditions are imposed by reflected points. A cloud of nodes in the vicinity of the surface is used to get a weighted average of the flow properties via a gridless least-squares technique. If the displacement of the moving surface from the original position is typically small, a small-perturbation boundary condition method can be used. To ensure computational efficiency, multigrid solution is made via a framework of embedded grids for local grid refinement. Computations of airfoil wing and wing-body test cases show the practical usefulness of the embedded Cartesian grids with the small-perturbation boundary conditions approach.  相似文献   

13.
Aiming at a complex multi-block structured grid, an efficient dynamic mesh generation method is presented in this paper, which is based on radial basis functions (RBFs) and transfinite interpolation (TFI). When the object is moving, the multi-block structured grid would be changed. The fast mesh deformation is critical for numerical simulation. In this work, the dynamic mesh deformation is completed in two steps. At first, we select all block vertexes with known deformation as center points, and apply RBFs interpolation to get the grid deformation on block edges. Then, an arc-lengthbased TFI is employed to efficiently calculate the grid deformation on block faces and inside each block. The present approach can be well applied to both two-dimensional (2D) and three-dimensional (3D) problems. Numerical results show that the dynamic meshes for all test cases can be generated in an accurate and efficient manner.  相似文献   

14.
提出一种基于移动网格的熵稳定格式求解双曲型守恒律方程.该方法利用等分布原理得到新的网格分布,基于守恒型插值公式计算新的网格上的物理量,使用熵稳定数值通量和三阶强稳定Runge-Kutta时间推进方法得到下一时刻的数值解.数值算例表明该格式不仅能有效提高解在间断处的分辨率,而且能消除可能产生的伪振荡.  相似文献   

15.
Mesh motion using radial basis functions has been demonstrated previously by the authors to produce high quality meshes suitable for use within unsteady and aeroelastic CFD codes. In the aeroelastic case the structural mesh may be used as the set of control points governing the deformation, which is efficient since the structural mesh is usually small. However, as a stand alone mesh motion tool, where the surface mesh points control the motion, radial basis functions may be restricted by the size of the surface mesh, as an update of a single volume point depends on all surface points. In this paper a method is presented that allows an arbitrary deformation to be represented to within a desired tolerance by using a significantly reduced set of surface points intelligently identified in a fashion that minimises the error in the interpolated surface. This method may be used on much larger cases and is successfully demonstrated here for a 106 cell mesh, where the initial solve phase cost reduces by a factor of eight with the new scheme and the mesh update by a factor of 55. It has also been shown that the number of surface points required to represent the surface is only geometry dependent (i.e. grid size independent), and so this reduction factor actually increases for larger meshes.  相似文献   

16.
周春华 《计算物理》2000,17(4):372-380
发展了一种广义Stokes问题的无覆盖区域分裂解法。子域交界面上的约束条件是通过引入一Lagrange乘子而得到弱满足的,在有限元离散子域的交界处网格可以是非匹配的。应用Petrov Galerkin方法解每个子域上的广义Stokes问题,而交界面上的Lagrange乘子则通过共轭梯度法迭代求解,各变量均由线性函数离散。对上述区域分裂解法,还构造了基于求解当地问题的误差事后估算方法。各变量的当地误差估算器定义在二阶非连续鼓包(bump)函数的空间中。最后给出了基于事后误差估算值的自适应网格上的数值结果。  相似文献   

17.
Moving Mesh Methods in Multiple Dimensions Based on Harmonic Maps   总被引:1,自引:0,他引:1  
In practice, there are three types of adaptive methods using the finite element approach, namely the h-method, p-method, and r-method. In the h-method, the overall method contains two parts, a solution algorithm and a mesh selection algorithm. These two parts are independent of each other in the sense that the change of the PDEs will affect the first part only. However, in some of the existing versions of the r-method (also known as the moving mesh method), these two parts are strongly associated with each other and as a result any change of the PDEs will result in the rewriting of the whole code. In this work, we will propose a moving mesh method which also contains two parts, a solution algorithm and a mesh-redistribution algorithm. Our efforts are to keep the advantages of the r-method (e.g., keep the number of nodes unchanged) and of the h-method (e.g., the two parts in the code are independent). A framework for adaptive meshes based on the Hamilton–Schoen–Yau theory was proposed by Dvinsky. In this work, we will extend Dvinsky's method to provide an efficient solver for the mesh-redistribution algorithm. The key idea is to construct the harmonic map between the physical space and a parameter space by an iteration procedure. Each iteration step is to move the mesh closer to the harmonic map. This procedure is simple and easy to program and also enables us to keep the map harmonic even after long times of numerical integration. The numerical schemes are applied to a number of test problems in two dimensions. It is observed that the mesh-redistribution strategy based on the harmonic maps adapts the mesh extremely well to the solution without producing skew elements for multi-dimensional computations.  相似文献   

18.
Based on the integral form of the fluid dynamic equations, a finite volume kinetic scheme with arbitrary control volume and mesh velocity is developed. Different from the earlier unified moving mesh gas-kinetic method [C.Q. Jin, K. Xu, An unified moving grid gas-kinetic method in Eulerian space for viscous flow computation, J. Comput. Phys. 222 (2007) 155–175], the coupling of the fluid equations and geometrical conservation laws has been removed in order to make the scheme applicable for any quadrilateral or unstructured mesh rather than parallelogram in 2D case. Since a purely Lagrangian method is always associated with mesh entangling, in order to avoid computational collapsing in multidimensional flow simulation, the mesh velocity is constructed by considering both fluid velocity (Lagrangian methodology) and diffusive velocity (Regenerating Eulerian mesh function). Therefore, we obtain a generalized Arbitrary-Lagrangian–Eulerian (ALE) method by properly designing a mesh velocity instead of re-generating a new mesh after distortion. As a result, the remapping step to interpolate flow variables from old mesh to new mesh is avoided. The current method provides a general framework, which can be considered as a remapping-free ALE-type method. Since there is great freedom in choosing mesh velocity, in order to improve the accuracy and robustness of the method, the adaptive moving mesh method [H.Z. Tang, T. Tang, Adaptive mesh methods for one-and two-dimensional hyperbolic conservation laws, SIAM J. Numer. Anal. 41 (2003) 487–515] can be also used to construct a mesh velocity to concentrate mesh to regions with high flow gradients.  相似文献   

19.
Typical VOF algorithms rely on an implicit slip that scales with mesh refinement, to allow contact lines to move along no-slip boundaries. As a result, solutions of contact line phenomena vary continuously with mesh spacing; this paper presents examples of that variation. A mesh-dependent dynamic contact angle model is then presented, that is based on fundamental hydrodynamics and serves as a more appropriate boundary condition at a moving contact line. This new boundary condition eliminates the stress singularity at the contact line; the resulting problem is thus well-posed and yields solutions that converge with mesh refinement. Numerical results are presented of a solid plate withdrawing from a fluid pool, and of spontaneous droplet spread at small capillary and Reynolds numbers.  相似文献   

20.
A methodology based on spectral collocation numerical methods for global flow stability analysis of incompressible external flows is presented. A potential shortcoming of spectral methods, namely the handling of the complex geometries encountered in global stability analysis, has been dealt with successfully in past works by the development of spectral-element methods on unstructured meshes. The present contribution shows that a certain degree of regularity of the geometry may be exploited in order to build a global stability analysis approach based on a regular spectral rectangular grid in curvilinear coordinates and conformal mappings. The derivation of the stability linear operator in curvilinear coordinates is presented along with the discretisation method. Unlike common practice to the solution of the same problem, the matrix discretising the eigenvalue problem is formed and stored. Subspace iteration and massive parallelisation are used in order to recover a wide window of its leading Ritz system. The method is applied to two external flows, both of which are lifting bodies with separation occurring just downstream of the leading edge. Specifically the flow configurations are a NACA 0015 airfoil, and an ellipse of aspect ratio 8 chosen to closely approximate the geometry of the airfoil. Both flow configurations are at an angle of attack of 18° with a Reynolds number based on the chord length of 200. The results of the stability analysis for both geometries are presented and illustrate analogous features.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号