首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 601 毫秒
1.
Composite ab initio CBS-Q and G3 methods were used to calculate the bond dissociation energies (BDEs) of over 200 compounds listed in CRC Handbook of Chemistry and Physics (2002 ed.). It was found that these two methods agree with each other excellently in the calculation of BDEs, and they can predict BDEs within 10 kJ/mol of the experimental values. Using these two methods, it was found that among the examined compounds 161 experimental BDEs are valid because the standard deviation between the experimental and theoretical values for them is only 8.6 kJ/mol. Nevertheless, 40 BDEs listed in the Handbook may be highly inaccurate as the experimental and theoretical values for them differ by over 20 kJ/mol. Furthermore, 11 BDEs listed in the Handbook may be seriously flawed as the experimental and theoretical values for them differ by over 40 kJ/mol. Using the 161 cautiously validated experimental BDEs, we then assessed the performances of the standard density functional (DFT) methods including B3LYP, B3P86, B3PW91, and BH&HLYP in the calculation of BDEs. It was found that the BH&HLYP method performed poorly for the BDE calculations. B3LYP, B3P86, and B3PW91, however, performed reasonably well for the calculation of BDEs with standard deviations of about 12.1-18.0 kJ/mol. Nonetheless, all the DFT methods underestimated the BDEs by 4-17 kJ/mol in average. Sometimes, the underestimation by the DFT methods could be as high as 40-60 kJ/mol. Therefore, the DFT methods were more reliable for relative BDE calculations than for absolute BDE calculations. Finally, it was observed that the basis set effects on the BDEs calculated by the DFT methods were usually small except for the heteroatom-hydrogen BDEs.  相似文献   

2.
This study explores the use of breathing orbital valence bond (BOVB) trial wave functions for diffusion Monte Carlo (DMC). The approach is applied to the computation of the carbon-hydrogen (C-H) bond dissociation energy (BDE) of acetylene. DMC with BOVB trial wave functions yields a C-H BDE of 132.4 +/- 0.9 kcal/mol, which is in excellent accord with the recommended experimental value of 132.8 +/- 0.7 kcal/mol. These values are to be compared with DMC results obtained with single determinant trial wave functions, using Hartree-Fock orbitals (137.5 +/- 0.5 kcal/mol) and local spin density (LDA) Kohn-Sham orbitals (135.6 +/- 0.5 kcal/mol).  相似文献   

3.
Abstract

First-principle computations were performed on the n-silane series (SinH2n+2, n = 1–10). The heat of formation (ΔfH), Gibbs free energy of formation (ΔfG), bond length, and bond dissociation energy (BDE) for both the Si?Si and Si?H bonds were predicted. The values of ΔfH and ΔfG from the accurate high level G3 method for lower silanes (n ≤ 5) were compared with experimental values and used as benchmarks. Thermodynamic properties derived from the G3 method in combination with the permutation reaction are in better agreement with experiments than those with the atomization reaction. The increments of the ΔfH and ΔfG values with an increasing SiH2-unit for n-silanes are 40.39 and 58.93 kJ/mol on average, respectively. The length of Si?Si bond increases slightly on average as the series number increases and then tends to be a constant for higher silanes. The BDEs for both the Si?Si and Si?H bonds initially decrease for lower silanes, and then approach a constant for higher silanes. The BDEs of the Si?Si bonds are smaller than those of Si?H bonds. The higher silanes are more unstable than the lower silanes. The average BDE of Si?Si bond at the MP2 level is ca. 302 kJ/mol, which is only half the experimental BDE value of the C?C bond (618 kJ/mol).

GRAPHICAL ABSTRACT   相似文献   

4.
Recently, O-H bond dissociation enthalpies (BDEs) have been successfully used to express the free radical scavenging ability of polyphenolic antioxidants. In this work, the BDEs of phenol, catechol, resorcinol, hydroquinone, pyrogallol, phloroglucinol, 1,2,4-benzenetriol, and 5-hydroxypyrogallol have been calculated at B3LYP/6-311G++(3df, 3pd) and used to elucidate the effect of OH groups. Increasing the number of OH groups in the adjacent (vicinal) position decreases the BDE of phenols. Increasing the number of O-H groups in the alternative position C(1,3) as in resorcinol and C(1,3,5) as in phloroglucinol does not show any notable change in the BDEs when compared to that of OH in C(1) as in phenol. 5-Hydroxypyrogallol has the smallest BDE (250.3 kJ mol(-1)) followed by pyrogallol (289.4 kJ mol(-1)), then 1,2,4-benzenetriol (294.8 kJ mol(-1)), and then catechol (312.8 kJ mol(-1)). Overall, our results indicated that the presence of ortho and para hydroxy groups reduces the BDEs. An intramolecular hydrogen bond (IHB) develops due to the ortho arrangement of OH's and plays a dominant role in decreasing the BDEs. This key study on phenols showed that the reactive order of OH position in the benzene ring is the following: 5-hydroxypyrogallol > pyrogallol > 1,2,4-benzenetriol > catechol > hydroquinone > phenol approximately resorcinol approximately phloroglucinol.  相似文献   

5.
The C–H homolytic bond dissociation enthalpies (BDEs) of 27 heterocyclic compounds of small systems (less than 8 non-hydrogen atoms) were evaluated by the composite ab initio methods of G4 and CBS-Q. In addition, the C–H BDEs of an extended database including 60 heterocyclic compounds were assessed by 16 DFT functionals. The correlation between the theoretical and experimental values reveals that the BMK functional provided the lowest root mean square error (RMSE) of 10.2 kJ/mol, and the correlation coefficient (R2) was 0.955. The mean deviation (MD), mean absolute deviation (MAD) of BMK are 0.1 kJ/mol and 7.9 kJ/mol separately. Therefore, we utilized BMK to research C–H BDEs together with the substituent effects of five-membered and six-membered heterocyclic compounds including large systems. The nature of C–H BDE change pattern was analyzed by the natural bond orbital (NBO).  相似文献   

6.
7.
王峰  任杰  李永旺 《应用化学》2009,26(12):1484-1488
采用密度泛函理论(DFT)方法研究了费托石脑油裂解反应中涉及到C1-C14正构烃和自由基中间体的生成焓及其C-C键解离能(BDE)。 结果表明,在所有评价的密度泛函理论方法(B97-1、BB1K、B1B95、MPWB1K和MPW1B95)中,MPW1B95/6-311G(d,p)方法计算最精确。 以此方法为基准,进一步对高碳烃及其裂解产物的标准生成焓和C-C键解离能进行了预测。 与可得到的实验数据相比,MPW1B95/6-311G(d,p)方法预测的烃和自由基的平均生成焓分别为0.8和2.7 kJ/mol,C-C键解离能的平均绝对误差只有3.1 kJ/mol,表明此方法不仅可准确计算正构烃标准生成焓和C-C键解离能,而且还能正确预测C-C键解离能变化趋势。  相似文献   

8.
In recent years, there has been growing interest in selecting efficient antioxidants with low toxicity to reduce the damage of free radicals. Among these antioxidants, flavonoids have been paid much attention, owing to their excellent antioxidative and pharmacological activities1. Up to now, many efforts have been given to summarize the structure-activity relationships (SAR) for flavonoids. It has been widely accepted that two structural factors are critical for flavonoids to enhance the…  相似文献   

9.
A quantum Monte Carlo (QMC) benchmark study of heats of formation at 298 K and bond dissociation energies (BDEs) of 22 small hydrocarbons is reported. Diffusion Monte Carlo (DMC) results, obtained using a simple product trial wavefunctions consisting of a single determinant and correlation function, are compared to experiment and to other theory including a version of complete basis set theory (CBS‐Q) and density functional theory (DFT) with the B3LYP functional. For heats of formation, the findings are a mean absolute deviation from experiment of 1.2 kcal/mol for CBS‐Q, 2.0 kcal/mol for B3LYP, and 2.2 kcal/mol for DMC. The mean absolute deviation of 31 BDEs is 2.0 kcal/mol for CBS‐Q, 4.2 kcal/mol for B3LYP, and 2.5 kcal/mol for DMC. These findings are for 17 BDEs of closed‐shell molecules that have mean absolute deviations from experiment of 1.7 kcal/mol (CBS‐Q), 4.0 kcal/mol (B3LYP), and 2.2 kcal/mol (DMC). The corresponding results for the 14 BDEs of open‐shell molecules studied are 2.4 kcal/mol (CBS‐Q), 4.3 kcal/mol (B3LYP), and 2.9 kcal/mol (DMC). The DMC results provide a baseline from which improvement using multideterminant trial functions can be measured. © 2005 Wiley Periodicals, Inc. Int J Chem Kinet 37: 583–592, 2005  相似文献   

10.
The C−NO2 bond dissociation energies in nitrobenzene; 3-amino-nitrobenze; 4-amino-nitrobenze; 1,3-dinitrobenzene; 1,4-dinitrobenzene; 2-methyl-nitrobenzene; 4-methyl-nitrobenzene; and 1,3,5-trinitrobenzene nitroaromatic molecules, are computed using B3LYP, B3PW91, B3P86 three-parameter hybrid Density Functional Theory (DFT) methods in conjunction with 6-31G** basis set. By comparing the computed energies and experimental ones, it is found that B3P86/6-31G** is not capable of predicting the satisfactory bond dissociation energy (BDE). The BDEs computed with both B3LYP/6-31G** and B3PW91/6-31G** for the nitroaromatic molecules are closer to the experimental ones than those obtained with B3P86/6-31G**. But, when compared with the experimental one, the BDE from the B3LYP/6-31G** has the maximum deviation, which is completely outside our desired target accuracy for chemical predictions (less than 2.00 kcal mol−1). Therefore, we suggest B3PW91/6-31G** method as a reliable method of computing the BDE for removal of the nitrogen dioxide group in the nitroaromatic compounds. In addition, the C−NO2 BDEs for 2,4,6-trinitrotoluene (TNT), triaminotrinitrobenzene (TATB), diaminotrinitrobenzene (DATB), and picramide are studied with B3PW91/6-31G** method.  相似文献   

11.
Quantum chemical calculations are used to estimate the equilibrium C? NO bond dissociation energies (BDEs) for eight X? NO molecule (X = CCl3, C6F5, CH3, CH3CH2, iC3H7, tC4H9, CH2CHCH2, and C6H5CH2). These compounds are studied by employing the hybrid density functional theory (B3LYP, B3PW91, B3P86) methods together with 6‐31G** and 6‐311G** basis sets and the complete basis set (CBS‐QB3) method. The obtained results are compared with the available experimental results. It is demonstrated that B3P86/6‐31G** and CBS‐QB3 methods are accurate for computing the reliable BDEs for the X? NO molecule. Considering the inevitably computational cost of CBS‐QB3 method and the reliability of the B3P86 calculations, B3P86 method with 6‐31G** basis set may be more suitable to calculate the BDEs of the C? NO bond. The solvent effects on the BDEs of the C? NO bond are analyzed and it is shown that the C? NO BDEs in a vacuum computed by using B3PW91/6‐311G** method are the closest to the computed values in acetontrile and the average solvent effect is 1.48 kcal/mol. Subsequently, the substituent effects of the BDEs of the C? NO bond are further analyzed and it is found that electron denoting group stabilizes the radical and as a result BDE decreases; whereas electron withdrawing group stabilizes the group state of the molecule and thus increases the BDE from the parent molecule. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

12.
The product channels and mechanisms of the C2HC12+O2 reaction are investigated by step-scan time-resolved Fourier transform infrared emission spectroscopy and the G3MP2// B3LYP/6-311G(d,p) level of electronic structure calculations. Vibrationally excited products of HCI, CO, and CO2 are observed in the IR emission spectra and the product vibrational state distribution are determined which shows that HCI and CO are vibrationally excited with the nascent average vibrational energy estimated to be 59.8 and 51.8 kJ/mol respectively. In combination with the G3MP2//B3LYP/6-311G(d,p) calculations, the reaction mechanisms have been characterized and the energetically favorable reaction pathways have been suggested.  相似文献   

13.
Ab initio UMP2 and UQCISD(T) calculations, with 6-311G** basis sets, were performed for the titled reactions. The results show that the reactions have two product channels: NH2+ HNCO?NH3+NCO (1) and NH2+HNCO?N2H3+CO (2), where reaction (1) is a hydrogen abstraction reaction via an H-bonded complex (HBC), lowering the energy by 32.48 kJ/mol relative to reactants. The calculated QCISD(T)//MP2(full) energy barrier is 29.04 kJ/mol, which is in excellent accordance with the experimental value of 29.09 kJ/mol. In the range of reaction temperature 2300–2700 K, transition theory rate constant for reaction (1) is 1.68×1011–3.29×1011 mL·mol-1·s-1, which is close to the experimental one of 5.0×1011mL·mol-1·s-1or less. However, reaction (2) is a stepwise reaction proceeding via two orientation modes,cis andtrans, and the energy barriers for the rate-control step at our best calculations are 92.79 kJ/mol (forcis-mode) and 147.43 kJ/mol (fortrans-mode), respectively, which is much higher than reaction (1). So reaction (1) is the main channel for the titled reaction.  相似文献   

14.
The glass transition temperature (Tg), density, refractive index, Raman scattering spectra, and X-ray photoelectron spectra (XPS) for xZnO-yBi2O3-zB2O3 glasses (x=10-65, y=10-50, z=25-60 mol%) are measured to clarify the bonding and structure features of the glasses with large amounts of ZnO. The average electronic polarizability of oxide ions (αO2−) and optical basicity (Λ) of the glasses estimated using Lorentz-Lorenz equation increase with increasing ZnO or Bi2O3 content, giving the values of αO2−=1.963 Å3 and Λ=0.819 for 60ZnO-10Bi2O3-30B2O3 glass. The formation of BOBi and BOZn bridging bonds in the glass structure is suggested from Raman and XPS spectra. The average single bond strength (BMO) proposed by Dimitrov and Komatsu is applied to the glasses and is calculated using single bond strengths of 150.6 kJ/mol for ZnO bonds in ZnO4 groups, 102.5 kJ/mol for BiO bonds in BiO6 groups, 498 kJ/mol for BO bonds in BO3 groups, and 373 kJ/mol for BO bonds in BO4 groups. Good correlations are observed between Tg and BMO, Λ and BMO, and Tg and Λ, proposing that the average single bond strength is a good parameter for understanding thermal and optical properties of ZnOBi2O3B2O3 glasses.  相似文献   

15.
Studies on the kinetics and mechanism of the reaction leading to Cr2(MoO4)3 have been made using X-ray diffraction and infrared spectroscopy. The apparent activation energy, E=285±22 kJ/mol has been calculated, based on the Ginstling-Brounstein diffusion controlled model.  相似文献   

16.
Controversy remains regarding the suitable density functionals for the calculation of vitamin B(12) systems that contain cobalt. To identify the optimum functionals, geometry optimization calculations were performed on a full-size model of methylcobalamin (MeCbl) using the B3LYP, B3LYP-D, BP86, and BP86-D methods in conjunction with the 6-31G* basis set. Single-point energy evaluations were also performed with the 6-311+G(2d,p) basis set. Consistent with previous studies, the BP86-optimized geometry showed fairly good agreement with the experimental geometry. Various factors that may influence the homolytic bond dissociation energy (BDE) of the Co-C bond of MeCbl were systematically evaluated with these methods. Our analysis demonstrated that dispersion was the largest correction term that influenced the magnitude of BDE. Previous studies have shown that B3LYP significantly underestimates BDE, whereas BP86 gives BDE values that are fairly close to the experimental values (36-37 kcal/mol). The same trend in the relative magnitudes of the BDEs was observed in the present calculations. However, BP86 underestimated the BDE for a full model of MeCbl. When the amount of Hartree-Fock exchange in the B3LYP functional was reduced to 15% and the dispersion correction was made (i.e., B3LYP*-D), the calculated BDE was in good accord with experimental values. B3P86-D also performed well. A detailed analysis was undertaken to determine which atoms in cobalamin have large dispersion interactions with a methyl fragment of MeCbl.  相似文献   

17.
Bond dissociation enthalpies (BDEs) of a large series of aliphatic amines (21) were measured by means of photoacoustic calorimetry. Despite the different structures studied in the primary, secondary, and tertiary amine series, the alpha(C-H) BDEs were found to be very similar for unconstrained amines with values very close to 91 kcal/mol. alphaC- and N-alkylation or introduction of an hydroxy group only slightly affect the BDEs, a fact in perfect agreement with calculations performed at different CBS levels. This demonstrates the predominance of the two-orbital-three-electron interaction involving the N and alphaC(*) orbitals. On the other hand, the N-H BDE decreases when going from primary to secondary amines. This result is interpreted in term of a hyperconjugation in sigmaC-C bonds, which leads to a stabilization of the aminyl radical. For cyclized amines, the BDEs depend on the relative geometry of the singly occupied alphaC(*) orbital with respect to that of the N atom, disfavoring the two-orbital-three-electron interaction. However, such structures can exhibit through-bond interaction. For a crowded structure such as triisopropylamine, for which the alphaC(*) orbital is not coplanar with the nitrogen one, the relaxation of a strain energy allows the BDE to be comparable to flexible structures.  相似文献   

18.
The adsorption and dissociation of molecular oxygen on spinel CuCr2O4 (100) surface were carried out by first-principles calculations based on density functional theory (DFT). The calculated results indicate that the Cr site is most favorable for atomic oxygen adsorption, with an adsorption energy of 402.8 kJ/mol. For molecular oxygen adsorption, there are three types of favorable interaction modes: O2 forms bonds with the Cu site or O2 binds to two Cr sites or O2 interacts with both Cu and Cr sites simultaneously. The lowest activation energy (Ea = 35.4 kJ/mol) was found through exploring possible reaction pathways for O2 dissociation. The relationship between Ea and reaction enthalpy (ΔH) for O2 dissociation adsorption reactions fits Brønsted-Evans-Polanyi (BEP) behavior.  相似文献   

19.
郝兰  王艳  陈光巨 《化学学报》2008,66(9):1028-1036
采用固体镶嵌势能模型和DFT/B3LYP方法研究了在Pd/MgO和Cu/MgO表面吸附CO和O2分子的电子性质. 计算结果表明, 在完美MgO(100)表面Pd原子对CO和O2的吸附能分别为206.5和84.8 kJ/mol, 因此可知Pd原子更容易吸附CO分子; 而当Pd原子附着于有氧缺陷的MgO表面时, 它对两种分子的吸附都非常弱. 相反, 附着于MgO表面的Cu原子对O2分子的吸附更为有利, 其吸附能在140~155 kJ/mol之间. 研究结果还表明, 对于双分子吸附体系, 即CO+CO, CO+O2, O2+O2体系, 双分子之间的结合力可减小完美MgO表面上Pd原子与被吸附分子的相互作用, 使吸附能减少了46~96 kJ/mol. 而对于在MgO表面上的Cu原子, 只有O2+O2 体系使吸附能减少了大约50~71 kJ/mol.  相似文献   

20.
The roles of ribonucleoside and deoxyribonucleoside radicals in DNA and RNA damage cannot be properly understood in the absence of knowledge of the C-H and N-H bond dissociation enthalpies (BDEs) depicting the energy cost to generate each of these radicals. However, because the nucleoside radicals tend to be extremely short-lived and it is very difficult to separate and identify different nucleoside radicals, experimental BDEs for nucleosides have remained elusive. Herein, we developed an ONIOM-G3B3 method in order to reliably predict the BDEs of nucleosides and we carefully benchmarked this new method against over 60 experimental BDEs of diverse sizable molecules. It was found that the accuracy of the ONIOM-G3B3 method was about 1.4 kcal/mol for BDE calculations. Using the ONIOM-G3B3 method, a full scale of C-H and N-H BDEs were obtained for the first time for ribonucleosides and deoxyribonucleosides with an estimated error bar of +/-1.4 kcal/mol. Discussions were then made about the interesting connections between these BDE values and previously reported experimental observations concerning radical-mediated DNA and RNA lesions. The significance of the work is twofold: (i) Nucleosides represent one of the most important groups of compounds in science. A full scale of reliable bond dissociation enthalpies for nucleosides is of fundamental importance. (ii) This work demonstrates the feasibility to accurately predict the bond strength of various sizable molecules ranging from nanosize molecular devices to biologically significant compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号