首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, TiO2 particles (~30 nm) modified with Gd2O3-coating layer (~2 nm) for dye-sensitized solar cells (DSSCs) were fabricated via the hydrothermal method. Among the solar cells based on the Gd3+-doped TiO2 photoanodes, the optimal conversion efficiency was obtained from the 0.025Gd3+-modified TiO2-based cell, with a 17.7% improvement in the efficiency as compared to the unmodified one (7.18%). This enhancement was probably due to the improved UV radiation harvesting via a down-conversion luminescence process by Gd3+ ions, enhancement of visible light absorption and improved dye loading capacity. In addition, after Gd modification, a thin coating could be formed on the TiO2 nanoparticles, which worked as an energy barrier and resulted in a lower charge recombination.  相似文献   

2.
《Current Applied Physics》2014,14(6):856-861
TiO2 nanofibers (NFs) were fabricated by an electrospinning process and were used as scattering layers in dye-sensitized solar cells (DSSCs). The NF-coated photoanodes of the DSSCs were prepared with a variety of scattering layer thicknesses. The thickness effect of the scattering layer on the double-layered TiO2 nanoparticle (NP)/TiO2 NF structure was investigated through structural, morphological, and optical measurements. In the double-layered photoanode, the TiO2 NP layer plays a major role in dye adsorption and light transmission, and the TiO2 NF scattering layer improves the absorption of visible light due to the light scattering effects. The scattering effect of TiO2 NFs layer was examined by the incident monochromatic photon-to-electron conversion efficiency (IPCE) and UV–Vis spectrometry. The conversion efficiency for the 12 μm-thick photoanode composed of a 2 μm-thick TiO2 NF layer and 10 μm-thick TiO2 NP layer was higher than that of DSSCs with only TiO2 NPs photoanode by approximately 33%.  相似文献   

3.
Hydrothermal process has been employed to synthesize titanium oxide (TiO2) bottle brush. The nanostructured bottle brushes with tetragonal nanorods of ~75 nm diameter have been synthesized by changing the nature of the precursors and hydrothermal processing parameters. The morphological features and structural properties of TiO2 films were investigated by field emission scanning electron microscopy, X-ray diffraction, high-resolution transmission electron spectroscopy, Fourier transform Raman spectroscopy, and X-ray photoelectron spectroscopy. The influence of such nanostructures on the performance of dye-sensitized solar cells (DSSCs) is investigated in detail. The interface and transient properties of these nanorods and bottle brush-based photoanodes in DSSCs were analyzed by electrochemical impedance spectroscopic measurements in order to understand the critical factors contributing to such high power conversion efficiency. Surface area of sample was recorded using Brunauer–Emmett–Teller measurements. It is found that bottle brush provides effective large surface area 89.34 m2 g?1 which is much higher than TiO2 nanorods 63.7 m2 g?1. Such effective surface area can facilitate the effective light harvesting, and hence improves the dye adsorption and the photovoltaic performance of DSSCs, typically in short-circuit photocurrent and power conversion efficiency. A best power conversion efficiency of 6.63 % has been achieved. We believe that the present device performance would have wide interests in dye-sensitized solar cell research.  相似文献   

4.

Dye-sensitized solar cells (DSSCs) offer an alternative to conventional silicon solar cell because of low cost and easy fabrication. However, one major drawback in DSSCs is their low efficiency. This paper reports the effect of using a binary iodide salt mixture with different size cations on the efficiency enhancement in dye sensitized solar cells based on polymer gel electrolytes. Several different polymers, such as polyacrylonitrile (PAN), polymethylmethacrylate (PMMA), poly (vinylidenefluoride (PVdF)), and polyethylene oxide (PEO) have been used as host polymers. A binary iodide mixture consisting of an alkaline iodide salt (small cation) and a quaternary ammonium iodide salt such as tetrapropyl ammonium iodide (Pr4NI) (large cation) has been used as the iodide ion source. In some of these systems, efficiency enhancement of more than 25% has been reached due to the “mixed cation effect”. From these studies, it was established that the variation of the power conversion efficiency with the concentration ratio of the two iodide salts follows the same trend as the short circuit current density (J sc) and goes through a maximum at a particular salt concentration ratio. The maximum efficiency was found to be higher than the efficiencies of the DSSCs with only a single iodide salt in the electrolyte. The J sc in these DSSCs appears to be governed by the iodide ion conductivity of the gel electrolyte. The observed efficiency enhancement has been explained on the basis of the electrode effects as well as electrolyte effects where the cations play a dominant role.

  相似文献   

5.
We have proposed dye-sensitized solar cells (DSSCs) with trench-type TiO2 nanotube structure to improve the low device efficiency of conventional TiO2 nanotube DSSCs using Ti substrate. Compared to the conventional standing-type TiO2 nanotube structure based DSSCs, the trench-type TiO2 nanotube structure based DSSCs have shown an improvement of device efficiency of approximately 40% due to the large increase of Jsc. In the trench-type TiO2 nanotube structure, the contact area between the TiO2 nanotube sidewall and the Ti substrate is significantly increased. This increase of contact area provides more charge transport paths than exist in the conventional standing-type TiO2 nanotube structure and reduces the electrical resistance between the Ti substrate and the TiO2 nanotubes. Therefore, the remarkable increase of Jsc is the result of the charge collection efficiency, which is improved due to the increase of contact area between the TiO2 nanotube sidewall and the Ti substrate in the trench-type TiO2 nanotube structure. The fabrication of the trench-type TiO2 nanotube structure is an effective manufacturing process for improving the device efficiency of TiO2 nanotube based DSSCs using Ti substrate. DSSCs having an 11.9 μm thick trench-type TiO2 nanotube structure have shown an efficiency of 5.74%.  相似文献   

6.
The novel TiO2 nanopartilces/nanowires (TNPWs) composite with ZrO2 nanoparticles (ZNPs) shell-coated photoanodes were prepared to fabricate high-performance dye-sensitized solar cell (DSSC) based on different types of electrolytes. Hafnium oxide (HfO2) is a new and efficient blocking layer material applied over the TNPWs-ZNPs core-shell photoanode film. TiO2 nanoparticles (TNPs) and TiO2 nanowires (TNWs) were characterized by X-ray diffractometer (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). DSSCs were fabricated using the novel photoanodes with an organic sensitizer D149 dye and different types of electrolytes namely liquid electrolyte, ionic liquid electrolyte, solid-state electrolyte, and quasi-solid-state electrolyte. The DSSC-4 made through the novel core-shell photoanode using quasi-solid-state electrolyte showed better photocurrent efficiency (PCE) as compared to the other DSSCs. It has such photocurrent-voltage characteristics: short circuit photocurrent (Jsc)?=?19 mA/cm2, the open circuit voltage (Voc)?=?650 mV, fill factor (FF)?=?65 %, and PCE (η)?=?8.03 %. The improved performance of DSSC-4 is ascribed to the core-shell with blocking layer photoanode could increased electron transport and suppressed recombination of charge carriers at the TNPWs-ZNPs/dye/electrolyte interface.  相似文献   

7.
This study examined the applicability of TiO2/SnO2/TiCl4 hybrid electrodes in dye-sensitized solar cells (DSSCs) by combining chemical modeling with experimentation. The interfacial chemical reactions in a TiO2/SnO2/TiCl4 system were simulated using a thermochemistry software package, which led to the design and testing of hybrid working electrodes. Chemical thermodynamic modeling proved that TiCl4 is an effective agent in removing Tin+ (n<4) and Snm+ (m<4) ion impurities from dry-mixed TiO2/SnO2 composite particles. Our results demonstrate that the power conversion efficiency of DSSC with a TiO2/SnO2/TiCl4 hybrid electrode exceeds that of the conventional DSSC with a TiO2 electrode due to the effects of light-scattering and the formation of additional absorbance (SnCl2), which is an unexpected side effect of TiCl4 treatment enabling the absorption of visible light. The proposed approach is ideally suited to establishing relationships between chemistry theory and the structure and performance of advanced DSSCs as well as photo-electro-chemical systems.  相似文献   

8.
In this research TiO2 nanocrystals with sizes about 11–70 nm were grown by hydrothermal method. The process was performed in basic autoclaving pH in the range of 8.0–12.0. The synthesized anatase phase TiO2 nanocrystals were then applied in the phtoanode of the dye sensitized solar cells. It was shown that the final average size of the nanocrystals was larger when the growth was carried out in higher autoclaving pHs. The photoanodes made of TiO2 nanocrystals prepared in the pHs of 8.0 and 9.0 represented low amounts of dye adsorption and light scattering. The performance of the corresponding dye sensitized solar cells was also not acceptable. Nevertheless, the energy conversion efficiency was better for the state of pH of 9.0. For the photoanodes made of TiO2 nanocrystals prepared at autoclaving pH of 10.0, the dye adsorption and light scattering were quite higher. The photovoltaic characteristics of the best cell in this state were 15.25 mA/cm2, 740 mV, 0.6 and 6.8% for the short-circuit current density, open-circuit voltage, fill factor and efficiency, respectively. The photoanodes composed of TiO2 nanocrystals prepared in autoclaving pHs of 11.0 and 12.0 demonstrated lower amount of dye adsorption and higher light scattering. This was quite considerable for the state of pH of 12.0. The energy conversion efficiencies were consequently decreased compared to that of the pH of 10.0. The optimum situation was finally discussed based on the nanocrystals size and its influence on the sensitization and light harvesting efficiency.  相似文献   

9.
In the present paper, photovoltaic studies of dye-sensitized solar cells (DSSCs) based on betacyanin/TiO2 and betacyanin/WO3–TiO2 have been done. The cell performances were compared through IV curves and wavelength dependant photocurrent measurements for the two new types of DSSCs. The TiO2-coated DSSC showed the photovoltage and photocurrent of 300 mV and 4.96 mA/cm2, whereas the cell employing WO3–TiO2 photoelectrode showed the values 435 mV and 9.86 mA/cm2, respectively. The conversion efficiency of TiO2 based dye-sensitized solar cell was found to be 0.69 %, while WO3–TiO2-based cell exhibited a higher conversion efficiency of 2.2 %. The better performance of the WO3–TiO2 dye-sensitized solar cell photoelectrode is thought to be due to an inherent energy barrier at the electrode/electrolyte interface leading to the reduced recombination of photoinduced electrons.  相似文献   

10.
Rubidium ions, with energy in the range 0.1 MeV, 2.0 MeV have been implanted in TiO2 single crystals at RT and LNT.

Defects induced by implantation have been studied by optical spectroscopy, X-ray diffraction, RBS, TEM and electrical conductivity.

During implantation, the implanted samples are blue colored after irradiation. This coloration is due to an optical absorption band localized at 900 nm which corresponds to optical transition of intrinsic defects identified as Ti3+. These defects are induced by a chemical reaction between the implanted ions and the oxygen of the lattice as in the case of D+, H+, Li+, Na+ and K+ implanted in rutile.1-3

The synthesis of a new phase in heavily implanted rutile is exhibited by using a thermal treatment and by combining techniques such as RBS, TEM and X-ray diffraction at glancing angle in the temperature range 300°C-700°C.

This compound does not correspond to metallic precipitates of rubidium which are observed in MgO implanted with Rb ions.

Planar defects have been observed in the implanted area. A correlation is exhibited between these defects and the precipitates of the new phase. From X-ray diffraction measurements and TEM observations, the composition of the synthetized compound is likely Rb2TiO3.  相似文献   

11.
Dye-sensitized solar cells (DSSCs) were fabricated using TiO2 nanoparticles (NPs), TiO2 nanotube arrays (NTAs), and surface-modified NTAs with a TiCl4 treatment. The photovoltaic efficiencies of the DSSCs using TiO2 NP, NTA, and TiCl4-treated NTA electrodes are 4.25, 4.74, and 7.47 %, respectively. The highest performance was observed with a TiCl4-treated TiO2 NTA photoanode, although in the case of the latter two electrodes, the amounts of N719 dye adsorbed were similar and 68 % of that of the NP electrode. Electrochemical impedance measurements show that the overall resistance, including the charge–transfer resistance, was smaller with NTA morphologies than with NP morphologies. We suggest that a different electron transfer mechanism along the one-dimensional nanostructure of the TiO2 NTAs contributes to the smaller charge–transfer resistance, resulting in a higher short circuit current (J sc), even at lower dye adsorption. Furthermore, the TiCl4-treated NTAs showed even smaller charge–transfer resistance, resulting in the highest J sc value, because the downward shift in the conduction band edge improves the electron injection efficiency from the excited dye into the TiCl4-treated TiO2 electrodes.  相似文献   

12.
The photoanodes of solid state dye sensitized solar cells (ss-DSCs) embedded with different contents of TiO2 hollow spheres (HSs) were prepared and the photovoltaic performances were systematically characterized. TiO2 hollow spheres were synthesized by a facile sacrificial templating method, grounded and added in different ratios to TiO2 nanoparticle (NP) paste, from which composite HS/NP electrodes were fabricated. The composite photoanodes include hollow spheres of 300–700 nm with enhanced light scattering characteristics in visible range which leads to improved light absorption in conventional thin film electrodes of ss-DSC. By optimizing the amount of HSs in the paste, 40% improvement in efficiency was obtained in comparison to ss-DSC utilized pure NP electrodes. By increasing the fraction of HSs in the electrode the current density increased by 56% (from 2.5 to 3.9 mA cm?2). The improved photovoltaic performance of ss-DSC is primarily due to different morphology and altered charged trap distribution in HSs in comparison to NP which leads to significant enhancement in electron transport time and electron lifetime as well as charge collection efficiency and light absorption properties.  相似文献   

13.
Synthesis of apatites, Na1−xKxPb4(PO4)3 0≤x≤1, with anion vacancy was carried out using solid state reactions. The solid solution of apatite-type structure crystallizes in the hexagonal system, space group P63/m (No 176). Rietveld refinements showed that 75% of Pb2+ cations are located in the (6h) sites; the ninefold coordination sites (4f) are equally occupied by the other 25% lead cations and the K+ and Na+ monovalent ions.The structure can be described as built up from [PO4]3− tetrahedra and Pb2+ of sixfold coordination cavities (6h positions), which delimit void hexagonal tunnels running along [0 0 1]. These tunnels are connected by cations of mixed sites (4f) half occupied by Pb2+ and half by Na+/K+ mixed cations. The assignment of the observed frequencies in the Raman and infrared spectra is discussed on the basis of a unit cell group analysis and by comparison with other apatites. The Raman modes of all the compositions show some linear shifts of the frequencies as a function of the composition toward lower values due the substitutions of Na+ by K+ with a larger radius.  相似文献   

14.
Large-scale macroporous TiO2 nanowires (MTN) were directly grown on spiral-shaped titanium wires as photoanodes of dye-sensitized solar cells (DSSCs) via a facile hydrothermal reaction without any seeds, templates, and TiO2 powder. The MTN thin film was characterized by SEM, XRD and TEM. The studies revealed that the MTN thin film had better mechanical properties and provided an efficient pathway for the diffusion of liquid electrolyte. The efficiency of 0.86% for the 3D DSSC was obtained with a J sc of 2.30 mA/cm2, V oc of 616 mV, and FF of 0.61. This MNT-based mini 3D DSSC is a promising photovoltaic device for applications in the fields of high-integrated micro-electronic equipment.  相似文献   

15.
GaN nanowires typically exhibit high electron mobility and excellent chemical stability. However, stability of GaN is detrimental for successful attachment of dye molecules and its application in dye-sensitized solar cells (DSSCs). Here we demonstrate DSSCs based on GaN/gallium oxide and GaN/TiO x core–shell structures, and we show that coating of GaN nanowires with a TiO x shell significantly increases dye adsorption and consequently photovoltaic performance. The best cells exhibited short circuit current density of 1.83 mA/cm2 and power conversion efficiency of 0.44% under AM 1.5 simulated solar illumination.  相似文献   

16.
The adsorption of ethylene by zeolite NaY and zeolite NaY modified by cation exchange with potassium, rubidium, and cesium ions was studied. Cation exchanges were carried out using KNO3, RbNO3, and CsNO3 in the concentration ranges of 0.2-10 mM. XRD patterns and specific surface areas illustrated that modification of NaY zeolite by very dilute solutions containing K+, Rb+ and Cs+ did not lead to significant changes in the crystallinity. Analysis of metals content (ICP-OES) showed that Cs+ can replace Na+ better than Rb+ and K+. Particle analysis indicated slight decreases in surface area but pore volumes and pore diameters remained unchanged. Ethylene adsorption isotherms indicated that Na-Y zeolite which was modified by 5.0 mM KNO3, 0.5 mM RbNO3 and 1.0 mM CsNO3 could adsorb ethylene better than zeolite Na-Y. K-NaY zeolite adsorbed up to 102.45 cm3/g ethylene, while Rb-NaY and Cs-NaY zeolites adsorbed up to 98.50 cm3/g and 90.15 cm3/g ethylene, respectively. Ethylene adsorption capacities depended on number of adsorption sites and surface interactions.  相似文献   

17.
In this paper, a high-performance silver-doped titanium dioxide (Ag/TiO2) humidity sensor was synthesized using a hydrothermal synthesis method for respiratory monitoring. The sensing mechanism was studied by the first principles of density functional theory (DFT). Calculations show that the doping of Ag+ ions increases the adsorption energy of TiO2 to water molecules. Furthermore, the Ti–O bond in TiO2 is broken due to the doping of Ag+ ions, which promotes the generation of Ti3+ defects. Experiments show that the doping of Ag+ ions can increase the hydroxide groups, Ti3+ defects and oxygen vacancies on the surface of TiO2, thus effectively improving the responsivity, linearity and hysteresis of the TiO2 humidity sensor. Compared to TiO2, the resistance of the Ag/TiO2 (0.5 mM) humidity sensor reaches 4.5 orders of magnitude with a high response of 39707.1, maximum hysteresis rate of 4.6%, response/recovery time of 31 s/15 s and the best linearity in a range of 11%–95% RH. In addition, the Ag/TiO2 humidity sensor has been successfully used to detect different modes of respiration and determine the respiratory rate under different respiratory states. Significantly, this work demonstrates potential application value in human healthcare and activities monitoring.  相似文献   

18.
Çakil Erk 《光谱学快报》2013,46(9):723-730
Abstract

The association constants of Li+, Ca+2 and Mg+2 ions complexing with 1, 4, 7, 10-tetraoxcyclododecane in DHO were determined by the aid of 13C dipole-dipole relaxation time measurements. To obtain the Ka, association constant, the TO 1 values of the stoichiometric complex solutions and the T10 of the free molecules were applied to the equation derived, 1/Ka· Ao + 2 = 1/P + P, for the 1:1 ratio of the complexing and to the equation 1/2Ka·Ao + 3/2 = P + 1/2P for the 1:2 ratio of the complexing where P, is molar ratio of the crown complexed ions.

Accordingly we found that the binding ability of the macrocyclic ether towards to the cations is in the following order of Li+ < Mg+2 ? Ca+2 in DHO solutions.  相似文献   

19.
ABSTRACT

Interactions of cycloheptatriene derivatives, C7H6X, (X?=?NH, PH, AsH, O, S, Se) with the cations H+, CH3+, Cu+, Al+, Li+, Na+, and K+ are studied using B3LYP functional and 6-311++G(d,p) basis set. The calculated gas-phase cation affinities (CA) and cation basicities (CB) for all molecules decrease as H+ > CH3+ > Cu+ > Al+ > Li+ > Na+ > K+. We used the induced aromaticity in the 7-membered ring of C7H6X upon interaction with the cations, M+, as a measure of C7H6X/M+ interaction. Nucleus-independent chemical shift (NICS) and harmonic oscillator model of aromaticity (HOMA) were used as two indices of aromaticity. The highest and lowest induced aromaticities were observed for interactions of H+ and K+, respectively. Also, the aromaticity induced by interaction with a cation in C7H6AsH and C7H6PH was larger than that in C7H6NH and C7H6O. Hence, the aromaticity was considered as a measure of covalency for the C7H6X/M+ interactions showing a rational dependence on both the molecule and cation. The nature of the interactions was also assessed using electron density, charge distribution analysis and NBO calculations. The results of the aromaticity indices, NICS and HOMA, were compared with the electron density and NBO results.  相似文献   

20.
Titania (TiO2) nanorods have been synthesized with controlled size for dye-sensitized solar cells (DSSCs) via hydrothermal route at low hydrothermal temperature of 100 °C for 24 h. The titania nanorods were characterized using XRD, SEM, TEM/HRTEM, UV-vis Spectroscopy, FTIR and BET specific surface area (S BET), as well as pore-size distribution by BJH. The results indicated that the bulk traps and the surface states within the TiO2 nanorods films have enhanced the efficiency of DSSCs. The size of the titania nanorods was 6.7 nm in width and 22 nm in length. The high surface area can provide more sites for dye adsorption, while the fast photoelectron-transfer channel can enhance the photogenerated electron transfer to complete the circuit. The specific surface area S BET was 77.14 m2?g?1 at the synthesis conditions. However, the band gap energy of the obtained titania nanorods was 3.2 eV. The oriented nanorods with appropriate lengths are beneficial in improving the electron transport property and thus leading to the increase of photocurrent, together enhancing the power conversion efficiency. A nearly quantitative absorbed photon-to-electrical current conversion achieved upon excitation at wave length of 550 nm and the power efficiency was enhanced from 5.6 % for commercial TiO2 nanoparticles Degussa (P25) cells to 7.2 % for TiO2 nanorods cells under AM 1.5 illumination (100 mW?cm?2). The TiO2 cells performance was improved due to their high surface area, hierarchically mesoporous structures and fast electron-transfer rate compared with the Degussa (P25).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号