首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis and pH‐sensing properties of fluorescent polymer nanoparticles (NPs) in the 20 nm diameter range with a sensitive dye covalently attached to the particle surface and a reference dye entrapped within the particle core are presented. Fluorescein‐functionalized NPs were readily obtained by conjugation of fluorescein isothiocyanate (FITC) to amine‐coated crosslinked polystyrene‐based nanoparticles prepared by microemulsion polymerization followed by postfunctionalization. This all water‐based method gave access to stable aqueous suspensions of pH‐sensing fluorescent NPs. The encapsulation of the insensitive reference fluorescent dye (1,9‐diphenylanthracene, DPA) was then conveniently achieved by soaking leading to dual fluorescent NPs containing about 20 DPA and 55 fluorescein, as deduced from spectroscopic analyses. This core‐shell type architecture maximizes the interactions of the sensing dye with the medium while protecting the reference dye. The variations of the ratio of the fluorescence emission intensities of the sensitive dye (fluorescein) to the reference dye (DPA) with pH show that the dual fluorescent NPs act as a ratiometric pH sensor with a measuring range between pH 4 and pH 8. This pH nanosensor was found to be fast, fully reversible, and robust without any leaching of dye over a long period of time. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6206–6213, 2008  相似文献   

2.
Pyranine (HPTS) is a remarkably interesting pH-sensitive dye that has been used for plenty of applications. Its high quantum yield and extremely sensitive ratiometric fluorescence against pH change makes it a very favorable for pH-sensing applications and the development of pH nano-/microsensors. However, its strong negative charge and lack of easily modifiable functional groups makes it difficult to use with charged substrates such as silica. This study reports a methodology for noncovalent HPTS immobilization on silica microparticles that considers the retention of pH sensitivity as well as the long-term stability of the pH microsensors. The study emphasizes the importance of surface charge for governing the sensitivity of the immobilized HPTS dye molecules on silica microparticles. The importance of the immobilization methodology, which preserves the sensitivity and stability of the microsensors, is also assessed.  相似文献   

3.
It is significant for cell physiology to keep the homeostasis of p H, and it is highly demanded to develop ratiometric fluorescent sensors toward p H. In this work, under mild condition, through the electrostatic interaction between carbon nanodots(CDs) and organic molecules, two novel ratiometric fluorescence hybrid nanosensors were fabricated for sensing acidic p H. These nanohybrid systems possess dual emission peaks at 455 and 527 nm under a single excitation wavelength of 380 nm in acidic p H condition.With the increasing of p H, the fluorescence of the 1,8-naphthalimide derivative completely quenches,while the blue fluorescence of CDs keeps constant. Furthermore, the CDsàorganic molecular nanohybrids exhibit excellent anti-disturbance ability, reversible p H sensing ability, and a linear response range in wide p H range respectively. Besides the ability to target lysosome, with one of the nanosensor, stimulated p H change has been successfully tracked in a ratiometric manner via fluorescence imaging.  相似文献   

4.
The fluorescence sensing of several monosaccharides using boronic acid-substituted viologen quenchers in combination with the fluorescent dye pyranine (HPTS) is reported. In this two-component sensing system, fluorescence quenching by the viologen is modulated by monosaccharides to provide a fluorescence signal. A series of viologen quenchers with different charges were prepared and tested for their ability both to quench the fluorescence of HPTS and to sense changes in glucose concentration in aqueous solution at pH 7.4. Both quenching efficiency and sugar sensing were found to be strongly dependent upon viologen charge. The molar ratio between HPTS and each of the viologen quenchers was varied in order to obtain an optimal ratio that provided a fairly linear fluorescence signal across a physiological glucose concentration range. Both the quenching and sugar sensing results are explained by electrostatic interaction between dye and quencher.  相似文献   

5.
We present a versatile time-dependent non-linear calibration protocol for optical sensors, implemented on the pH sensitive ratiometric fluorophore 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS) immobilized in ethyl-cellulose. The calibration protocol individually compensated for the progressive drift of calibration parameters, whereby sensor precision and accuracy, as well as applicable lifetime were improved. A severely reduced photoacidity was observed for the immobilized fluorophore, for which excited state dynamics was characterized and benefited from during measurements. Due to the significantly reduced photoacidity of HPTS immobilized in the ethyl-cellulose sensing membrane, a dual excitation/dual emission (F1, ex/em: 405/440 nm and F2, ex/em: 465/510 nm) ratiometric (RF1,F2 = F1/F2) sensing scheme could be used to amplify sensor response. The signal to noise (S/N) ratio was enhanced by ∼400% utilizing the dual excitation/dual emission ratiometric sensing scheme, rather than the more commonly used protocol of dual excitation/single emission for HPTS fluorescence. Apparent pKa of the fluorophore ranged from 6.74 to 8.50, mainly determined by the immobilization procedure. The repeatability (IUPAC, pooled standard deviation) over three pH values (6.986, 7.702 and 7.828) was 0.0044 pH units for the optical sensor, compared to 0.0046 for the electrode used for standardization. Sensor analytical characteristics were thereby in principle limited by the performance of the standardization procedure.  相似文献   

6.
Synergistic effects arising from the conjugation of organic dyes onto non‐luminescent metal nanoparticles (NPs) have greatly broadened their applications in both imaging and sensing. Herein, we report that conjugation of a well‐known pH‐insensitive dye, tetramethyl‐rhodamine (TAMRA), to pH‐insensitive luminescent gold nanoparticles (AuNPs) can lead to an ultrasmall nanoindicator that can fluorescently report local pH in a ratiometric way. Such synergy originated from the dimerization of TAMRA on AuNPs, of which geometry was very sensitive to surface charges of the AuNPs and can be reversely modulated through protonation of surrounding glutathione ligands. Not limited to pH‐insensitive dyes, this pH‐dependent dimerization can also enhance the pH sensitivity of fluorescein, a well‐known pH‐sensitive dye, within a larger pH range, opening up a new pathway to design ultrasmall fluorescent ratiometric nanoindicators with tunable wavelengths and pH response ranges.  相似文献   

7.
We have synthesized dual-fluorophore-doped core-shell silica nanoparticles used as ratiometric pH sensor. The nanoparticles were prepared with a reverse microemulsion technique by simultaneously encapsulating two different fluorophores, the pH-sensitive dye fluorescein as a pH indicator and the pH-insensitive dye phenosafranine as an internal reference for fluorescence ratiometric measurement, into silica shell. The nanoparticles prevent the fluorescence dyes leaching from the silica matrix when immersed inside water. The hydrophilic silica shells were made by hydrolysing and polymerizing tetraethoxysilane (TEOS) in water-in-oil microemulsion. The fluorescence intensity ratio of the two dyes varied linearly as a function of pH in the range from 4.0 to 8.0. The sensor was also applied to measure pH of real water samples. The results are in good agreements with that using the conventional glass electrode method. The as-prepared fluorescent nanoparticles showed rapid response, excellent stability and high reproducibility as pH sensors.  相似文献   

8.
The objective of this work is to elucidate the electrochemical and corresponding optical properties of 8‐hydroxypyrene‐1,3,6‐trisulfonic acid (HPTS), using optically transparent electrodes, thereby deducing its usefulness as a model compound for spectroelectrochemical sensor development. Three pH levels were tested to determine optimal solution conditions for optical signal modulation. The electrolysis of HPTS follows an ECE mechanism, presumably resulting in the formation of a dihydroxy/dione derivative, and modulates the optical response at 405 and 460 nm wavelengths for pH 5 solutions. HPTS is a good candidate for spectroelectrochemical sensor research.  相似文献   

9.
Metal‐enhanced processes arising from the coupling of a dye with metallic nanoparticles (NPs) have been widely reported. However, few studies have simultaneously investigated these mechanisms from the viewpoint of dye fluorescence and photoactivity. Herein, protoporphyrin IX (PpIX) is grafted onto the surface of silver core silica shell NPs in order to investigate the effect of silver (Ag) localized surface plasmon resonance (LSPR) on PpIX fluorescence and PpIX singlet oxygen (1O2) production. Using two Ag core sizes, we report a systematic study of these photophysical processes as a function of silica (SiO2) spacer thickness, LSPR band position and excitation wavelength. The excitation of Ag NP LSPR, which overlaps the PpIX absorption band, leads to the concomitant enhancement of PpIX fluorescence and 1O2 production independently of the Ag core size, but in a more pronounced way for larger Ag cores. These enhancements result from the increase in the PpIX excitation rate through the LSPR excitation and decrease when the distance between PpIX and Ag NPs increases. A maximum fluorescence enhancement of up to 14‐fold, together with an increase in photogenerated 1O2 production of up to five times are obtained using 100 nm Ag cores coated with a 5 nm thick silica coating.  相似文献   

10.
We have prepared uniform silica nanoparticles (NPs) doped with a two-photon absorbing zwitterionic hemicyanine dye by reverse microemulsion method. Obvious solvatochromism on the absorption spectra of dye-doped NPs indicates that solvents can partly penetrate into the silica matrix and then affect the ground and excited state of dye molecules. For dye-doped NP suspensions, both one-photon and two-photon excited fluorescence are much stronger and recorded at shorter wavelength compared to those of free dye solutions with comparative overall dye concentration. This behavior is possibly attributed to the restricted twisted intramolecular charge transfer (TICT), which reduces fluorescence quenching when dye molecules are trapped in the silica matrix. Images from two-photon laser scanning fluorescence microscopy demonstrate that the dye-doped silica NPs can be actively uptaken by Hela cells with low cytotoxicity.  相似文献   

11.
We have rationally designed a new theranostic agent by coating near‐infrared (NIR) light‐absorbing polypyrrole (PPY) with poly(acrylic acid) (PAA), in which PAA acts as a nanoreactor and template, followed by growing small fluorescent silica nanoparticles (fSiO2 NPs) inside the PAA networks, resulting in the formation of polypyrrole@polyacrylic acid/fluorescent mesoporous silica (PPY@PAA/fmSiO2) core–shell NPs. Meanwhile, DOX‐loaded PPY@PAA/fmSiO2 NPs as pH and NIR dual‐sensitive drug delivery vehicles were employed for fluorescence imaging and chemo‐photothermal synergetic therapy in vitro and in vivo. The results demonstrate that the PPY@PAA/fmSiO2 NPs show high in vivo tumor uptake by the enhanced permeability and retention (EPR) effect after intravenous injection as revealed by in vivo fluorescence imaging, which is very helpful for visualizing the location of the tumor. Moreover, the obtained NPs inhibit tumor growth (95.6 % of tumors were eliminated) because of the combination of chemo‐photothermal therapy, which offers a synergistically improved therapeutic outcome compared with the use of either therapy alone. Therefore, the present study provides new insights into developing NIR and pH‐stimuli responsive PPY‐based multifunctional platform for cancer theranostics.  相似文献   

12.
《化学:亚洲杂志》2017,12(12):1314-1325
Bifunctional SBA‐1 mesoporous silica nanoparticles (MSNs) with carboxylic acid and amino groups (denoted as CNS‐10‐10) have been successfully synthesized, characterized, and employed as adsorbents for dye removal. Adsorbent CNS‐10‐10 shows high affinity towards cationic and anionic dyes in a wide pH range, and exhibits selective dye removal of a two‐dye mixture system of cationic methylene blue and anionic eosin Y. By changing the pH of the medium, the selectivity of the adsorption behavior can be easily modulated. For comparison purposes, the counterparts, that is, pure silica SBA‐1 MSNs (CS‐0) and those with either carboxylic acid or amino functional groups (denoted as CS‐10 and NS‐10, respectively) were also prepared to evaluate their dye‐adsorption behaviors. As revealed by the zeta‐potential measurements, the electrostatic interaction between the adsorbent surface and the dye molecule plays an important role in the adsorption mechanism. Adsorbent CNS‐10‐10 can be easily regenerated and reused, and maintains its adsorption efficiency up to 80 % after four cycles.  相似文献   

13.
We report on a fluorescence resonance energy transfer (FRET)-based ratiometric sensor for the detection of Hg(II) ion. First, silica nanoparticles were labeled with a hydrophobic fluorescent nitrobenzoxadiazolyl dye which acts as a FRET donor. A spirolactam rhodamine was then covalently linked to the surface of the silica particles. Exposure of the nanoparticles to Hg(II) in water induced a ring-opening reaction of the spirolactam rhodamine moieties, leading to the formation of a fluorescent derivative that can serve as the FRET acceptor. Ratiometric sensing of Hg(II) was accomplished by ratioing the fluorescence intensities at 520 nm and 578 nm. The average decay time for the donor decreases from 9.09 ns to 7.37 ns upon addition of Hg(II), which proves the occurrence of a FRET process. The detection limit of the assay is 100 nM (ca. 20 ppb). The sensor also exhibits a large Stokes shift (>150 nm) which can eliminate backscattering effects of excitation light.
Figure
A FRET-based ratiometric sensing system for Hg in water is built within the core/shell silica nanoparticle. This architecture ensures the control over the location of donor and acceptor, affording the system preferable for ratiometric sensing.  相似文献   

14.
A simple but effective approach was developed to synthesize amino functionalized fluorescein isothiocyanate-doped silica nanoparticles based upon polycondensation of tetraethoxysilane. Organic dye molecule (fluorescein isothiocyanate) coupled with a silane coupling agent, 3-aminopropyltriethoxysilane, was incorporated into silica sphere through controlled hydrolysis and polymerization of tetraethoxysilane. The dye was connected with silica sphere through 3-aminopropyltriethoxysilane, which avoided the leakage of the dye. The cohydrolysis and polymerization of tetraethoxysilane and 3-aminopropyltriethoxysilane outside the surface of the silica sphere formed another thin silica shell with the functionalized amino groups on the surface. With amino groups on the surface, the nanoparticle surface was affluent in positive charges. The amino-functionalized nanoparticles were linked with mouse monoclonal antibody against hepatitis B virus surface antigen through electrostatic interaction to form fluorescence probes, which were tested by immunochromatographic assay using immunochromatography test strip. It was indicated that the fluorescence probe was suitable for immunoassay.  相似文献   

15.
A series of stable and translucent colored nanolatex, that is, colloidal aqueous suspensions of dye‐tagged polymer nanoparticles (NPs) in the 15‐ to 20‐nm diameter range, have been prepared by covalent attachment of azobenzene chromophores to the surface of reactive NPs. Primary crosslinked NPs bearing chlorobenzyl groups were produced by microemulsion copolymerization of styrene and vinylbenzylchloride. Amine‐functionalized NPs were obtained after a second functionalization step with polyamines (cyclam and polypropyleneimine dendrimers of first and third generations). Dye‐doped particles were obtained by reacting pyridylazo‐dimethylaminobenzene (PADA) with chlorobenzyl‐NPs and by reacting amine‐reactive dimethylaminoazobenzene dyes (DABsyl, DAB‐ITC) as well as Disperse Red 1 acrylate with polyamine‐coated NPs. Regardless the dye solubility, the grafting readily proceeded in aqueous suspensions at room temperature in the presence of a cationic surfactant without added solvent. Purple, red, and orange suspensions (maximum absorption around 550, 500, 430 nm), with dye loads ranging from 0.3 to 1.2 mmol/g, corresponding to 400–1800 azobenzene residues per NP, are obtained. The reported results indicate that functional polymer NPs, with remarkably accessible multiple anchoring sites, are useful building blocks. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3375–3386, 2008  相似文献   

16.
Herein, we report the synthesis of biocompatible triplex Ag@SiO2@mTiO2 core–shell nanoparticles (NPs) for simultaneous fluorescence‐surface‐enhanced Raman scattering (F‐SERS) bimodal imaging and drug delivery. Stable Raman signals were created by typical SERS tags that were composed of Ag NPs for optical enhancement, a reporter molecule of 4‐mercaptopyridine (4‐Mpy) for a spectroscopic signature, and a silica shell for protection. A further coating of mesoporous titania (mTiO2) on the SERS tags offered high loading capacity for a fluorescence dye (flavin mononucleotide) and an anti‐cancer drug (doxorubicin (DOX)), thereby endowing the material with fluorescence‐imaging and therapeutic functions. The as‐prepared F‐SERS dots exhibited strong fluorescence when excited by light at 460 nm whilst a stable, characteristic 4‐Mpy SERS signal was detected when the excitation wavelength was changed to longer wavelength (632.8 nm), both in solution and after incorporation inside living cells. Their excellent biocompatibility was demonstrated by low cytotoxicity against MCF‐7 cells, even at a high concentration of 100 μg mL?1. In vitro cell cytotoxicity confirmed that DOX‐loaded F‐SERS dots had a comparable or even greater therapeutic effect compared with the free drug, owing to the increased cell‐uptake, which was attributed to the possible endocytosis mechanism of the NPs. To the best of our knowledge, this is the first proof‐of‐concept investigation on a multifunctional nanomedicine that possessed a combined capacity for fast and multiplexed F‐SERS labeling as well as drug‐loading for cancer therapy.  相似文献   

17.
Oter O  Ertekin K  Derinkuyu S 《Talanta》2008,76(3):557-563
In this study emission-based ratiometric response of ion pair form of 1-hydroxy-3,6,8-pyrenetrisulfonate (HPTS) to gaseous CO(2) has been evaluated in ionic liquid (IL) containing ethyl cellulose (EC) matrix. The ionic liquid: 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIMBF(4)); provided longer storage time and highly stable microenvironment for the HPTS molecule due to the buffering effect. The utilization of ionic liquid in ethyl cellulose matrix resulted with superior spectral characteristics. The excitation spectra of HPTS exhibited an atypical isoemmissive point in modified EC matrix at 418 nm which allows ratiometric processing of the signal intensities. EMIMBF(4)-doped sensor films exhibited enhanced linear working range between 0 and 100% pCO(2). The signal changes were fully reversible and the shelf life of the EMIMBF(4)-doped films was extended from 15 to 95 days.  相似文献   

18.
A new fiber-optic prototype of luminometer has been designed in order to perform ratiometric-based measurements for optical sensing purposes. The coupling of a pH-selective sensing phase to the fiber-optic prototype has been evaluated for robust pH optosensing in drinking water. The pH-sensitive material has been synthesized by entrapping a pH-sensitive luminescent indicator (mercurochrome) in a sol-gel inorganic matrix. The pH optosensing is based on the detection of pH-induced reversible changes in the mercurochrome fluorescent emission and in the light reflected by the sensing phase.The instrument has been constructed using low-cost and simple optoelectronic components. The active phase was excited by means of a visible 470 nm high intensity light emitting diode (LED). The radiant power of the LED was modulated using a sinusoidal function so that scattered light due to light sources of different frequency than the modulating signal (e.g. sunlight) can be easily removed by adequate electronic filtering of the emission signal. Both the fluorescence emission from the dye and the sensing phase reflected light were collected in a bifurcated fiber-optic to allow the ratiometric measurement.Two different ratiometric approaches have been evaluated. The analytical performance of the pH optrode using both measurement methods have been compared, between them and with simple fluorescence intensity measurements, in terms of sensitivity, measurement range, response time, repeatability and insensitivity to changes in excitation light intensity.The applicability of the developed pH optrode and methods has been tested for pH analysis in tap and bottled still mineral water samples. The results obtained showed good agreement with the corresponding pH values provided by a commercial glass electrode.In this work, pH was selected as a model analyte to evaluate the performance of the proposed methodology, although other optical sensors for different applications/analytes could benefit of this approach.  相似文献   

19.
A fluorescence ratiometric sensor for pH determination is described in this paper. The sensor incorporated the pH-sensitive dye meso-5,10,15,20-tetra-(4-allyloxyphenyl)porphyrin (TAPP) as an indicator and a pH-insensitive dye N-(2-methacryloxyethyl)benzo[k,l]thioxanthene-3,4-dicarboximide (MBTD), a benzothioxanthene derivative, as a reference for fluorescence ratiometric measurement. To prevent leakage of the dyes, both were photocopolymerized with acrylamide, hydroxyethyl methacrylate, and triethylene glycol dimethacrylate on the silanized glass surface. The reproducibility and response time of the prepared sensor were sufficient. Most common coexisting inorganic ions and organic compounds did not interfere with pH sensing. In the acidic pH range from 1.5 to 5.0 the fluorescence intensity ratio of the two dyes varied linearly as a function of pH. The sensing membrane was found to have a lifetime of at least one month. The sensor was applied to the analysis of waste water and artificial samples.  相似文献   

20.
刘力宏  张晗  张煊  江云宝 《中国化学》2005,23(4):421-426
Two dual fluorescent receptors (1 and 2) for monosaccharides based on 4-dialky(alkyl=methyl and n-butyl) containing boronic acid group at the amido aniline were synthesized and their spectral properties were investigated. These receptors exhibited dual fluorescence with the long-wavelength band displaying strong solvent-polarity dependence, indicating the occurrence of the excited-state intramolecular charge transfer (ICT).With increasing pH value in aqueous solutions, the hybridization of the boron atom changed from sp^2 to sp^3, inducing a decrease in the total fluorescence quantum yield. The experimental results indicated that the anionic form of the boronate group acted as an electron donor and the benzanilide-like charge transfer was promoted upon hybridization change. In the presence of monosaccharides, the boronic acid in 1 and 2 changed from neutral to anionic form. The intensity of the locally excited (LE) state emission decreased in the presence of sugars while a slight increase in the intensity at the charge transfer (CT) emission occurred. Based on the change in the CT to LE intensity ratios of 1 and 2 due to sugar binding, ratiometric fluorescent assays for monosaccharide sensing were established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号