首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 339 毫秒
1.
The kinetics of pulsed cathodoluminescence, which appears upon irradiation of condensed media with high-power electron beams of nanosecond duration, is analyzed. Four types of emission are considered: recombination emission, exciton emission, intracenter emission, and emission of electron and hole centers. It is found that the maximum difference in the kinetics of the intensities of emission of these types occurs in the time interval tt 1A ?1, and, in the far afterglow, an exponential decay occurs with the characteristic time (2A)?1 for the first and second types of luminescence and A ?1 for the fourth type. For the intracenter luminescence, the decay time is equal to (2A)?1 and A i ?1 for short-lived and long-lived radiative levels, respectively (A and A i are the probabilities of linear recombination of electron-hole pairs and decay of a radiative level, respectively). In the case of long-lived radiative levels, a strong peak is observed in the spectrum of intracenter luminescence in the far afterglow.  相似文献   

2.
Results of a study of transient optical absorption (TOA) and luminescence of lithium-gadolinium orthoborate Li6Gd(BO3)3 (LGBO) in the visible and ultraviolet spectral regions are presented. As revealed by absorption optical spectroscopy with nanosecond time resolution, the LGBO TOA derives from optical transitions in hole centers, with the optical density relaxation kinetics being mediated by interdefect tunneling recombination involving these centers and neutral lithium atoms acting as electronic Li0 centers. At 290 K, the Li0 centers are involved in thermally stimulated migration, which is not accompanied by carrier transfer to the conduction or valence band. The slow TOA decay kinetics components, with characteristic times ranging from a few milliseconds to seconds, have been assigned to diffusion-limited annihilation of lithium interstitials with vacancies. The mechanisms responsible for the creation and relaxation of short-living Frenkel defect pairs in the LGBO cation sublattice have been analyzed.  相似文献   

3.
The effect of impurities on the efficiency of the formation of color centers and hydrogen-bonded molecular complexes upon exposure to various radiations in lithium fluoride crystals grown in air is studied. The results of experiments for measuring optical properties, IR vibrational spectra, luminescence, and thermally stimulated luminescence are presented. The fact that the band in the range of 1800–2300 cm–1 corresponds to stretching vibrations of a complex with strong hydrogen bond is proved based on the Fermi-resonance perturbation in the region of 2080 cm–1, shaped as the Evans hole and bands A, B, and C. It is shown that the composition of these complexes includes an OH ion and an HF molecule. The crucial role of O2? V a + oxygen dipoles in the aggregation efficiency and gradient distribution of color centers and radiation resistance of hydroxyl ions is revealed. It is shown that products of radiation decomposition of OH ions stimulate, while decay of O2? V a + dipoles suppress, the formation of positively charged color centers.  相似文献   

4.
Results of a study of transient optical absorption (TOA) and luminescence of lithium gadolinium orthoborate Li6Gd(BO3)3 (LGBO) in the visible and UV spectral regions are presented. As revealed by absorption optical spectroscopy with nanosecond time resolution, the LGBO TOA derives from optical transitions in hole centers, with the optical density relaxation kinetics being mediated by interdefect tunneling recombination involving these centers and neutral lithium atoms acting as electronic Li0 centers. At 290 K, the Li0 centers are involved in thermostimulated migration, which is not accompanied by carrier transfer to the conduction or valence band. The slow components of the TOA decay kinetics, with characteristic times ranging from a few milliseconds to seconds, have been assigned to diffusion-limited annihilation of lithium interstitials with vacancies. The mechanisms responsible for the creation and relaxation of short-lived Frenkel defect pairs in the LGBO cation sublattice have been analyzed.  相似文献   

5.
The transient optical absorption and luminescence of LiB3O5 (LBO) nonlinear crystals in the visible and UV spectral ranges were studied. Measurements made using absorption optical spectroscopy with nsscale time resolution revealed that the transient optical absorption (TOA) in LBO originates from optical transitions in hole centers and that the kinetics of optical density relaxation are rate-limited by interdefect nonradiative tunneling recombination involving these hole centers and the Li0 electronic centers, which represent neutral lithium atoms. At 290 K, the Li0 centers can migrate in a thermally stimulated, one-dimensional manner, a process which is not accompanied by carrier delocalization into the conduction or valence band. It is shown that the pulsed LBO cathodoluminescence kinetics is rate-limited by a recombination process involving two competing valence-band-mediated hole centers and shallow B2+ electronic centers. The radiative recombination accounts for the characteristic σ-polarized LBO luminescence in the 4.0-eV region.  相似文献   

6.
A study of recombination kinetics in LiB3O5 (LBO) crystals by time-resolved luminescence and absorption spectroscopy is reported. An investigation of the kinetics of transient optical absorption (TOA) and luminescence under ns-scale electron-beam excitation performed within a broad temperature range of 77–500 K and a 1.2–5-eV spectral interval has established that the specific features in the recombination kinetics observed in LBO involve electronic, B2+, and hole, O, trapping centers. The TOA and luminescence kinetics, as well as their temperature dependence, are interpreted by a model of competing hole centers. Relations connecting the kinetics parameters and the temperature dependence to the parameters of the main LBO point defects are presented. Fiz. Tverd. Tela (St. Petersburg) 40, 2008–2014 (November 1998)  相似文献   

7.
We report the results of our experimental study and numerical simulation of the electronic excitation energy transfer to impurity centers under conditions where nonstationary processes take place in the hydrogen sublattice of potassium dihydrogen phosphate (KH2PO4) single crystals doped with mercury-like Tl+ ions (KDP:Tl). We present the experimental results of our investigation of the decay kinetics of the transient optical absorption (100 ns–50 s) of intrinsic defects in the hydrogen sublattice of KDP:Tl obtained by pulsed absorption spectroscopy and the results of our study of the dynamics of the change in steady-state luminescence intensity with irradiation time (1–5000 s). To explain the transfer of the energy being released during electron recombination involving intrinsic KDP:Tl lattice defects, we formulate a mathematical model for the transfer of this energy to impurity Tl+ luminescence centers. Within the model being developed, we present the systems of differential balance equations describing the nonstationary processes in the electron subsystem and the hydrogen sublattice; provide a technique for calculating the pair correlation functions Y(r, t) of dissimilar defects based on the solution of the Smoluchowski equation for the system of mobile hydrogen sublattice defects; calculate the time-dependent reaction rate constants K(t) for various experimental conditions; and outline the peculiarities and results of the model parametrization based on our experimental data. Based on our investigation, the dramatic and significant effect of a gradual inertial increase by a factor of 50–100 in steady-state luminescence intensity in the 4.5-eV band in KDP:Tl crystals due to the luminescence of mercury-like Tl+ ions has been explained qualitatively and quantitatively.  相似文献   

8.
A coordinated study of the relaxation of optical absorption induced by vacuum ultraviolet radiation, x-rays, and α-particles, as well as of photo- and thermostimulated luminescence (TSL) of LiF : Mg, Ti crystals (TLD-100) in the 295–750-K interval, has revealed that TSL regions characterized by activation energies E a = 2.2–2.4 eV and anomalously high frequency factors p 0 = 1021–1022 s?1 alternate with regions where E a = 1.5 eV and p 0 = 1012–1014 s?1. The relative intensities of the TSL peaks produced by UV illumination (10–17 eV) differ strongly under the conditions of selective photon-induced generation of anion excitons, free electrons and holes, or near-impurity electronic excitations. The latter are responsible for the high efficiency of tunneling radiative (involving titanium centers) or nonradiative (involving hydroxyl ions) recombination. The analysis of TSL peaks of LiF: Mg, Ti and LiF took into account two-step processes, namely, thermal dissociation of three-fluorine F 3 ? molecules and recombination of the products of their decay (V K and V F centers, H interstices).  相似文献   

9.
Color centers produced by X-rays in ammonium halides at various temperatures between 20°K and room temperature have been investigated by means of paramagnetic resonance and by optical methods. Two kinds of paramagnetic defects were found to be predominant, the self-trapped hole (V K-center) and another electron deficiency center involving a NH3 +-radical. The electronic structure of theV K-center is the same as in the alkali halides, except that the orientation of the molecular axis is along [100] instead of [110]. The kinetics of the thermally activated motion of theV K-centers and of their recombination with electrons has been studied. The electronic structure of the second center was derived from the hyperfine spectrum of the paramagnetic resonance. The rotation of the NH3 + ion and its connection with the order-disorder transition in NH4Cl has been studied.  相似文献   

10.
The luminescence of excitons and antisite defects (ADs) was investigated, as well as the specific features of the excitation energy transfer from excitons and ADs to the activator (Ce3+ ion) in phosphors based on Lu3Al5O12:Ce (LuAG:Ce) single crystals and single-crystalline films, which are characterized by significantly different concentrations of ADs of the Lu Al 3+ type and vacancy-type defects. The luminescence band with λmax = 249 nm in LuAG:Ce single-crystal films is due to the luminescence of self-trapped excitons (STEs) at regular sites of the garnet lattice. The excited state of STEs is characterized by the presence of two radiative levels with significantly different transition probabilities, which is responsible for the presence of two excitation bands with λmax = 160 and 167 nm and two components (fast and slow) in the decay kinetics of the STE luminescence. In LuAG:Ce single crystals, in contrast to single-crystal films, the radiative relaxation of STEs in the band with λmax = 253.5 nm occurs predominantly near Lu Al 3+ ADs. The intrinsic luminescence of LuAG:Ce single crystals at 300 K in the band with λmax = 325 nm (τ = 540 ns), which is excited in the band with λmax = 175 nm, is due to the radiative recombination of electrons with holes localized near Lu Al 3+ ADs. In LuAG:Ce single crystals, the excitation of the luminescence of Ce3+ ions occurs to a large extent with the participation of ADs. As a result, slow components are present in the luminescence decay of Ce3+ ions in LuAG:Ce single crystals due to both the reabsorption of the UV AD luminescence in the 4f-5d absorption band of Ce3+ ions with λmax = 340 nm and the intermediate localization of charge carriers at ADs and vacancy-type defects. In contrast to single crystals, in phosphors based on LuAG:Ce single-crystal films, the contribution of slow components to the luminescence of Ce3+ ions is significantly smaller due to a low concentration of these types of defects.  相似文献   

11.
A model of electron transfer by tunneling between trapped electron and hole centers in crystals with hydrogen bonds under the conditions of thermostimulated mobility of one carrier type in the recombination process has been developed. The proposed model describes all features in the kinetics of induced optical density relaxation observed in nonlinear optical crystals of KH2PO4 (KDP) and NH4H2PO4 (ADP) on a wide temporal scale (10−8–10 s) under pulsed irradiation. The results of model calculations have been compared with experimental data on the photoinduced transient optical absorption (TOA) in KDP and ADP crystals in the visible and UV ranges. The nature of the radiation-induced defects, which account for the TOA, and the dependence of the TOA decay kinetics on the temperature, excitation power, and other experimental conditions have been considered.  相似文献   

12.
The paper reports on a study of exciton luminescence in single crystals (SCs) and single-crystal films (SCFs) of YAlO3, which have substantially different concentrations of vacancy-type and substitutional defects, under excitation by synchrotron radiation near the fundamental absorption edge. The radiative annihilation of excitons in SCFs was shown to occur primarily at regular perovskite lattice sites and to be accompanied by luminescence in a band peaking at λmax = 295 nm with τ = 5.2 ns. In contrast to SCFs, the radiative exciton decay in YAlO3 SCs takes place predominantly near vacancy-type defects (F+ and F centers) and is accompanied by luminescence in the bands at λmax = 350 nm (τ = 2.5 ns) and 440 nm (τ1 = 1.9 ns, τ2 = 30 ms). Photoexcitation in the 175-nm band of YAlO3 SCs revealed photoconversion of the centers FF+.  相似文献   

13.
This paper reports on a study of the kinetics of electron tunneling transport between electron and hole centers in Li2B4O7 and LiB3O5 lithium borate crystals under the conditions where the mobility of one of the partners in the recombination process is thermally stimulated. A mathematical model has been proposed to describe all specific features in the relaxation kinetics of the induced optical density observed in Li2B4O7 (LTB) and LiB3O5 (LBO) nonlinear optical crystals within a broad time interval of 10−8−1 s after a radiation pulse. The results of calculations have been compared with experimental data on transient optical absorption (TOA) of LTB and LBO crystals in the visible and ultraviolet spectral regions. The nature of the radiation defects responsible for TOA and the dependence of the TOA decay kinetics on temperature, excitation power, and other experimental conditions have been discussed.  相似文献   

14.
Luminescence of very small samples of single crystals of coesite and stishovite has been studied. The spectra were detected under ionizing radiation (X-ray and electron beam) and the decay kinetics of cathodoluminescence in the range of time from 10 ns to 3 ms was measured. The coesite luminescence possesses a broad band at 3 eV with exponential decay about 680 μs at 80 K. The nature of this luminescence was explained as a self-trapped exciton creation in tetrahedron framework. The stishovite luminescence possesses two bands—blue (2.8 eV) and UV (4.7 eV). The UV band intensity grows more than 20 times with irradiation dose from initial level. This shows that the corresponding luminescence centers could be induced by the radiation. The decay of the UV band possesses a fast and a slow component. The determination of the fast decay parameters is beyond the capabilities of our apparatus (less than 10 ns), whereas the slow decay of the UV is non-exponential and takes place in the range of hundreds of microsecond. The blue band decay kinetics can be well approximated by power law ∼t−2, which may correspond to recombination of defects created by radiation. The stishovite single crystal luminescence is very similar to that of germanium dioxide single crystal of rutile structure. The nature of the stishovite luminescence is explained as recombination of defects created by irradiation in octahedron-structured lattice.  相似文献   

15.
This paper reports on a study of transient optical absorption and pulsed cathodoluminescence in APb2Cl5 (A = K, Rb) in the visible and ultraviolet spectral regions. The measurements performed by absorption optical spectroscopy with nanosecond time resolution showed the transient optical absorption of APb2Cl5 to derive from optical transitions in hole centers, and that the optical density relaxation kinetics is mediated by interdefect tunneling recombination in complementary pairs which involves Frenkel defects on the cation sublattice and self-trapped carriers. The slow components in the transient optical absorption decay kinetics, with characteristic times ranging from a few ms to seconds, have been assigned to diffusion-mediated annihilation of interstitial atoms with alkali metal vacancies. The mechanisms underlying creation and relaxation of the short-lived Frenkel defects on the cation sublattice and self-trapped carriers have been analyzed.  相似文献   

16.
Time-resolved emission and excitation spectra and luminescence decay kinetics were studied at 150-300 K for the green emission of PbWO4:Mo crystals. It was found that the slow (μs-ms) decay component observed under excitation in the defect-related absorption region (around 3.8-3.9 eV) arises from the G(II) emission which appears at the tunneling recombination of optically created electron and hole centers. The study of the emission decay kinetics at different temperatures and excitation intensities allowed concluding that both the monomolecular and the bimolecular tunneling recombination process can be stimulated in the mentioned energy range. The monomolecular process takes place in the isolated spatially correlated pairs of electron and hole centers produced without release of electrons into the conduction band. The bimolecular process takes place in the pairs of randomly distributed centers created at the trapping of free electrons from the conduction band. The formation of electron centers under irradiation in the defect-related absorption region was investigated by the electron spin resonance (ESR) and thermally stimulated luminescence (TSL) methods. The possibility of various photo-thermally stimulated defects creation processes, which take place with and without release of free electrons into the conduction band, was confirmed.  相似文献   

17.
Based on the results of a comparative analysis of luminescence spectroscopy and EPR spectroscopy data, it was found for the first time that the wide-band luminescence of Cr3+ ions in a forsterite crystal is due to the Cr3+-VMg center or, in a crystal additionally doped with lithium, to a Cr3+-Li+ center. For the first time, tunable laser action was obtained with Cr3+-Li+ centers responsible for the wide-band luminescence.  相似文献   

18.
The specific features of the absorption, photoluminescence, x-ray luminescence, thermally stimulated luminescence, and photostimulated luminescence spectra of CsBr: Eu2+ single crystals grown using the Bridgman method are investigated in the temperature range 80–500 K at the highest possible dopant content (0.1–0.4 mol % EuOBr in the batch) required for preparing perfect crystals. It is shown that an increase in the dopant content leads to a broadening of the absorption and photoluminescence excitation bands with maxima at wavelengths of 250 and 350 nm due to the interconfigurational transitions 4f7(8S7/2) → 4f65d(e g , t2g) in Eu2+ ions. The photoluminescence and photostimulated luminescence spectra of CsBr: EuOBr single crystals (0.1–0.4 mol % EuOBr) contain a band at a wavelength of λmax=450 nm and bands at wavelengths of λmax=508–523 and 436 nm. The last two bands are assigned to Eu2+-VCs isolated dipole centers and Eu2+-containing aggregate centers, respectively. It is revealed that the intensity of the luminescence associated with the aggregate centers (λmax=508–523 nm) is maximum at an EuOBr content of less than or equal to 0.1 mol % and decreases with an increase in the dopant content. The possibility of forming CsEuBr3-type nanocrystals that are responsible for the green luminescence observed at a wavelength λmax=508–523 nm in CsBr: Eu crystals is discussed. The intensity of photostimulated luminescence in the CsBr: EuOBr crystals irradiated with x-ray photons is found to increase as the dopant content increases. It is demonstrated that CsBr: EuOBr crystals at a dopant content in the range 0.3–0.4 mol % can be used as x-ray storage phosphors for visualizing x-ray images with high spatial resolution.  相似文献   

19.
Abstract

The paper is devoted to study of formation mechanisms and optical absorption of the hole-trapped centers in neutron, electron-impulse and X-irradiated BeO crystals. V0 and V? centers are found out to be formed as a result of neutron irradiation creating cation Frenkel pairs. Within the transient absorption decay kinetics, we registered a component whose thermal-time properties coincide with those of the luminescence of triplet self-trapped excitons. A number of absorption bands from the VB center and exciton hole nucleus are interpreted as transitions between the O? ion p-levels splitted by the crystal field, as well as polaron transitions and transitions into the valence band.  相似文献   

20.
The nature of the intrinsic luminescence of the lutetium aluminum garnet Lu3Al5O12 (LuAG) has been analyzed on the basis of time-resolved spectral kinetic investigations upon excitation of two model objects, LuAG single crystals and single-crystal films, by pulsed X-ray and synchrotron radiations. Due to the differences in the mechanisms and methods of crystallization, these objects are characterized by significantly different concentrations of LuAl antisite defects. The energy structure of luminescence centers in LuAG single crystals (self-trapped excitons (STEs), excitons localized near antisite defects, and LuAl antisite defects) has been established. For single-crystal LuAG films, grown by liquid-phase epitaxy from a Pb-containing flux, the energy parameters of the following luminescence centers have been determined: STEs in regular (unperturbed by the presence of antisite defects) sites of the garnet lattice and excitons localized near Pb2+ ions. The structure of the luminescence centers, related to the background emission of impurity Pb2+ ions, has also been established in the UV and visible ranges. It is suggested that, in contrast to the two-halide hole self-trapping, a self-trapped state similar to STEs in simple oxides (Al2O3, Y2O3) is formed in LuAG; this state is formed by self-trapped holes in the form of singly charged O? ions and electrons localized at excited levels of Lu3+ cations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号