首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
相变储能材料的研究进展   总被引:38,自引:0,他引:38  
综述了相变材料的研究进展状况 ,介绍了相变材料的分类以及各类相变材料的性能、储能机理和优缺点 ,并介绍了一些新型的相变材料 ,指出了该领域中有待解决的问题 ,展望了未来相变材料的发展前景。  相似文献   

2.
由于能源消费需求的持续增长和传统化学燃料的日益枯竭,对可再生能源的需求日益迫切。以地热能、太阳能为代表的可再生能源脱颖而出。然而,这些能源的应用易受到天气、季节、地点和时间的影响,具有不稳定性、随机性、波动性和间歇性。储能技术是解决上述问题的有效途径,它可以在需要的时候储存或释放能量。在各种储能技术可选材料中,相变材料(PCMs)是智能热能管理和便携式热能领域的有力候选者。大多数相变材料都存在导热系数低、环境污染、熔点泄漏等问题,因此有必要将相变材料封装到支撑骨架材料中。事实上,支撑材料在应用中仍面临着一些重大挑战。首先,骨架材料应能抵抗相变材料在相变过程中的体积变化,即具有良好的结构稳定性。其次,还应具有较高的导热系数和较低的泄漏率。石墨烯气凝胶(GA)已被证明是提高相变材料形状稳定性的有效支撑骨架,但相变引起的泄漏和网络结构的脆性是制约其应用的关键问题。在此,我们提出了一种双脉冲电镀的强化策略,用于制备铜@石墨烯气凝胶(Cu@GA)作为相变储能骨架材料。这一结构设计中,石墨烯气凝胶上的石墨烯片层上均匀地镀上了铜层,且不同片之间被铜镀层所连接。这种铜增强石墨烯气凝胶网络结构赋予复合材料良好的导热性和坚固的骨架稳定性,有利于增强相变换热和抑制相变过程中的泄漏。此外,通过真空浸渍法将十八胺(ODA)封装在Cu@GA骨架中,获得了结构稳定性高、泄漏率低的复合相变材料(Cu@GA/ODA),保证了ODA在Cu@GA骨架材料中的均匀分散和填充。通过比较复合相变材料的重量变化,研究了不同骨架对复合相变材料泄漏率的影响。优化后的复合相变材料(CPCM)Cu@GA/ODA经20次储热、放热循环后,泄漏率降低至19.82% (w,质量分数),而GA/ODA和GOA/ODA为骨架的复合相变材料的泄漏率分别为80.31% (w)和72.99% (w)。为了探讨这种影响的原因,用扫描电子显微镜(SEM)观察了循环后骨架的形貌。铜/石墨烯气凝胶(Cu@GA)骨架材料没有明显的收缩或坍塌,仍可以保持完整的三维网络结构,而氧化石墨烯气凝胶(GOA)和石墨烯气凝胶(GA)的骨架材料三维结构不复存在,且在氧化石墨烯/石墨烯片能够观察到明显的裂隙。铜涂层可以提高骨架的微观结构稳定性,有利于提高结构稳定性,降低复合材料的泄漏率。同时,该研究为构建理想的金属增强石墨烯气凝胶复合骨架材料铺平了新的道路,该复合材料具有优异的综合性能,可用于未来的相变储能、多孔微波吸收和储能应用。  相似文献   

3.
The objective of this study was to explore an innovative type of form-stable phase-change materials (PCMs) with flexible cellulose acetate (CA) nano-fibrous felts (nano-felts) absorbed with capric–myristic–stearic acid ternary eutectic mixture for thermal energy storage/retrieval. Capric–myristic–stearic acid (CMS) ternary eutectic mixture as model PCM was firstly prepared. The developed CA nano-felts as supporting material was mechanically flexible and was made from CA/polyvinylpyrrolidone (PVP) precursor composite nanofibers followed by removal of PVP components. The effects of original mass ratio of CA/PVP on absorption capacities of CA nano-felts were studied. The modified CA nano-felts with groove/porous structure and rough surfaces were capable of absorbing a large amount of PCMs. The morphological structures, as well as the properties of thermal energy storage, thermal stability and reliability, and thermal insulation of composite PCMs were characterized by scanning electron microscopy, differential scanning calorimetry, and thermal performance measurement, respectively. The results showed that CMS eutectic was absorbed in and/or supported by modified CA nano-felts. The heat enthalpy values of composite PCMs have slightly decreased in comparison with the corresponding theoretical values. The composite PCMs demonstrated good thermal stability and reliability after thermal cycles. The composite PCMs had high thermal insulation capability for temperature regulation.  相似文献   

4.
以刚性的二醋酸纤维素 (CDA)链为骨架 ,接枝上聚乙二醇 (PEG)柔性链段 ,可得到一种具有固固相变性能的网状储能材料 .利用该材料的PEG支链从结晶态到无定形态间的相转变 ,可以实现储能和释能的目的 .具体研究了PEG的百分含量及PEG的分子量对材料储能性能的影响 .研究结果表明 ,通过改变PEG的百分含量与PEG的分子量 ,可以得到不同相变焓和不同相变温度的材料  相似文献   

5.
Solar thermal fuels (STFs) have been particularly concerned as sustainable future energy due to their impressive ability to store solar energy in chemical bonds and controllably release thermal energy. However, currently studied STFs mainly focus on molecule-based materials with high photochemical activity, toxicity, and compromised features, which greatly restricts their applications in practical scenarios of solar energy utilization. Herein, we present a novel erythritol-based composite phase change material (PCM) as a new type of STFs with an outstanding capability to store solar energy as latent heat in its stable supercooling state and release thermal energy as needed. This composite PCM with stored thermal energy can be maintained stably at room temperature and subsequently release latent heat as high as 224.9 J/g during the crystallization process triggered by thermal stimuli. Remarkably, solar energy can be converted into latent heat stored in the composite PCM over months. Through mechanical stimulations, the released latent heat can increase the temperature of the composite up to 91 °C. This work presents a new concept of using spatiotemporal storage and release of latent heat in PCMs for solar energy utilization, making it a potential candidate as STFs for developing future clean energy techniques.  相似文献   

6.
Latent Heat Storage (LHS) with Phase-Change Materials (PCMs) represents a high energy density storage technology which could be applied in a variety of applications such as waste heat recovery and integration of renewable energy technologies in energy systems. To increase the sustainability of these storage solutions, PCMs have to be developed with particular regard to bio-origin and biodegradability. Triglycerides represent an interesting class of esters as the main constituents of animal and vegetable fats, with attractive thermal properties. In order to be used as PCMs, the thermal behaviour of triglycerides has to be fully understood, as in some cases they have been reported to show polymorphism and supercooling. This study assesses the suitability of triglycerides as PCMs by reviewing the literature published so far on their behaviour and properties. In particular, melting points, enthalpies of fusion, polymorphism, thermal conductivities, heat capacities and thermal cycling stabilities are considered, with a focus on LHS and thermal energy storage applications. In addition, the efforts conducted regarding modelling and the prediction of melting points and enthalpies based on chemical structures are summarized and assessed.  相似文献   

7.
Zeng  Ju-Lan  Shu  Li  Jiang  Liu-Mo  Chen  Yu-Hang  Zhang  Yu-Xiang  Xie  Ting  Sun  Li-Xian  Cao  Zhong 《Journal of Thermal Analysis and Calorimetry》2019,135(6):3171-3179
Journal of Thermal Analysis and Calorimetry - Phase change materials (PCMs) that can store the heat energy obtained from intermittent solar irradiation are very important for solar energy...  相似文献   

8.
Latent heat nano composite building materials   总被引:1,自引:0,他引:1  
Heat storage for heating and cooling of buildings reduces the conventional energy consumption with a direct impact on CO2 emissions. The goal of this study was to find the physico-chemical fundamentals for tailoring phase change material (PCM)-epoxy composites as building materials depending on phase change temperature and latent heat using the optimal geometry for each application. Thus, some nano-composite materials were prepared by mixing a PCM with large latent heats with epoxy resin and Al powder. Some polyethylene glycols of different molecular weights (1000, 1500, and 2000) were used as PCMs. Subsequently these PCM-epoxy composites were thermo-physically characterized by DSC measurements and found to be suitable for building applications due to their large latent heat, appropriate phase change temperature and good performance stability. Moreover these cross-linked three dimensional structures are able to reduce the space and costs for encapsulation.  相似文献   

9.
The nebulous term phase‐change material (PCM) simply refers to any substance that has a large heat of fusion and a sharp melting point. PCMs have been used for many years in commercial applications, mainly for heat management purposes. However, these fascinating materials have recently been rediscovered and applied to a broad range of technologies, such as smart drug delivery, information storage, barcoding, and detection. With the hope of kindling interest in this incredibly versatile range of materials, this Review presents an array of aspects related to the compositions, preparations, and emerging applications of PCMs.  相似文献   

10.
The building sector is known to make a large contribution to total energy consumption and CO2 emissions. Phase change materials (PCMs) have been considered for thermal energy storage (TES) in buildings. They can balance out the discrepancies between energy demand and energy supply, which are temporally out of phase. However, traditional PCMs need special latent storage devices or containers to encapsulate the PCM, in order to store and release the latent heat of the PCM. The proper design of TES systems using a PCM requires quantitative information and knowledge about the heat transfer and phase change processes in the PCM. In Korea, radiant floor heating systems, which have traditionally been used in residential buildings, consume approximately 55% of the total residential building energy consumption in heating. This article reviews the development of available latent heat thermal energy storage technologies and discusses PCM application methods for residential building using radiant floor heating systems with the goal of reducing energy consumption.  相似文献   

11.
A series of Poly vinyl butyral–Poly (acrylic acid) (PVB-PAA) based form-stable phase change materials (PCMs) have been prepared for the use of thermal energy storage applications. Six types of formulations containing five different fatty alcohols were prepared by adding PVB to PAA. Using electrospinning to fabricate nanofibrous mats, our aim was to investigate their properties as form-stable PCMs. Fatty alcohols, 1-Tetradecanol, 1-Hexadecanol, 1-Octadecanol, 1-Eicosanol and 1-Docosanol, were added separately to base formulation. The structural characterization tests were performed by ATR-FTIR spectroscopy. Morphological tests were conducted using Scanning Electron Microscope (SEM). Thermal performances and phase change behaviors were tested by thermogravimetric analysis system (TGA) and differential scanning calorimetry (DSC). The heating cycle phase change enthalpy is measured between 223 and 241?J/g, and the freezing cycle phase change enthalpy is found between 215 and 239?J/g. The main decomposition PVB-PAA based PCMs started at 220?°C. This study suggested that PVB-PAA based PCMs possess well phase change properties and they were found to have an applicable temperature range. With the presented results these materials promise a great potential in thermal energy storage applications.  相似文献   

12.
Three phase change paraffinic materials (PCMs) were thermophysically (phase-transition temperatures, latent heat, heat capacity at constant pressure, density, and thermal conductivity) investigated in order to be used as latent heat storage media in a pilot plant developed in Plovdiv Bulgaria. Raman structural investigation probes aliphatic character of the E53 sample, while the E46 and ECP samples contain also unsaturated components due to their Raman features within 1,500–1,700 cm?1 range. Orthorhombic structure of the three PCMs was evidenced by the Raman modes at the 1,417 cm?1. The highest latent heat value, ΔH, of phase transitions among the three materials was represented by summation of a solid order–disorder, and melting latent heat was encountered by the E53 paraffin, i.e., 194.32 J g?1 during a μ-DSC scan of 1 °C min?1. Conversely, the ECP composite containing ceresin component shows the lowest latent heat value of 143.89 J g?1 and the highest thermal conductivity of 0.46 W m?1 K?1 among the three phase change materials (PCMs). More facile melt-disordered solid transition with the activation energy of 525.45 kJ mol?1 than the lower temperature transition of disorder–order (E a of 631.73 kJ mol?1) during the two-step process of solidification for the E53 melt are discussed in terms of structural and molecular motion changes.  相似文献   

13.
Tan  Ni  Ning  Yu-Hao  Hu  Ping  Feng  Yang  Li  Qi  Lin  Chuan-Huang  Cao  Zhong  Zhang  Yue-Fei  Zeng  Ju-Lan 《Journal of Thermal Analysis and Calorimetry》2022,147(13):7077-7097
Journal of Thermal Analysis and Calorimetry - Solid–liquid phase change materials (PCMs) are a kind of important heat energy storage materials that can store/release great amounts of latent...  相似文献   

14.
Journal of Thermal Analysis and Calorimetry - Phase change materials (PCMs) can store and release the latent heat associated with a phase transition, so they can be applied in thermal energy...  相似文献   

15.
This study investigates the thermal properties of new silver nano-based organic ester (SNOE) phase-change material (PCM) in terms of latent heat capacity, thermal conductivity and heat storage and release capabilities experimentally. Spherical-shaped surface-functionalized crystalline silver nanoparticles (AgNP) prepared were embedded in mass proportions of 0.1 through 5.0 wt% into the pure (base) PCM. Experimental results reveal that dispersion of AgNP into PCM was effective, only physical and no chemical interaction between AgNP and PCM has been exhibited; thereby phase-change temperature of SNOE PCMs were acceptable. These are essential characteristics for SNOE PCMs which signified their thermal and chemical stability on long term. Test results suggest that while compared to pure PCM, degree of supercooling was reduced by 11.7–6.8 % for aforesaid mass proportions of AgNP, whereas latent heat capacities decreased by 7.88 % in freezing and 8.91 % in melting. The interdependencies between thermophysical properties in improving nucleation and growth rate of stable SNOE PCM crystals were signified and discussed. Thermal conductivity of SNOE PCMs were enhanced from 0.284 to 0.765 W m?1 K?1 which was expected to be a 10–67 % increase for the above mass loading of AgNP. Furthermore, for SNOE PCMs enhancement span in freezing and melting cycles was improved by 41 and 45.6 %, respectively. Similarly, cooling and melting times were reduced by 30.8 and 11.3 %, respectively. Embedded AgNP helps to achieve improved thermophysical and heat storage characteristics for SNOE PCMs, which in turn can be considered as a potential candidate for cool thermal energy storage applications.  相似文献   

16.
Phase change materials (PCM) have been extensively scrutinized for their widely application in thermal energy storage (TES). Paraffin was considered to be one of the most prospective PCMs with perfect properties. However, lower thermal conductivity hinders the further application. In this letter, we experimentally investigate the thermal conductivity and energy storage of composites consisting of paraffin and micron-size graphite flakes (MSGFs). The results strongly suggested that the thermal conductivity enhances enormously with increasing the mass fraction of the MSGFs. The formation of heat flow network is the key factor for high thermal conductivity in this case. Meanwhile, compared to that of the thermal conductivity, the latent heat capacity, the melting temperature, and the freezing temperature of the composites present negligible change with increasing the concentration of the MSGFs. The paraffin-based composites have great potential for energy storage application with optimal fraction of the MSGFs.  相似文献   

17.
Functional phase-change materials (PCMs) are conspicuously absent in various organic or inorganic solids with diversified applications in which the attributes of these molecular materials have been highly realized. Leakage problem during the phase transition process is the main obstacle on the way of widely use of solid-liquid PCMs who has been recognized to be promisingly practical candidates for energy storage owing to the high energy storage density and small volume change in the phase transition process. Herein, a novel homogeneous-to-heterogeneous-strategy, in which all the starting materials involved display a homogeneous state and the encapsulation framework formed in situ in the encapsulation process, enabled by an aerogel reaction of silica was realized under the catalysis of an organic base. Besides the comprehensive study upon energy storage performance, light-to-thermal conversion and recyclability performance study of the obtained materials reveal the clear superiority over pristine paraffin wax (PW) thanks to the versatility and robustness of this fabrication method. More importantly, the homogeneous-to-heterogeneous-strategy endows a unique adsorption ability with respect to organic pollutant due to the PCMs inside and therefore bearing a great potential to be used in environment protection fields.  相似文献   

18.
《中国化学快报》2023,34(8):107916
The liquid leakage and weak solar absorption capacity of organic phase change materials (PCMs) seriously hinder the efficient utilization of solar energy and thermal energy storage. To address these issues, we prepared nanoporous metal organic framework (Ni-MOF) for the vacuum infiltration of paraffin wax (PW), followed by the coating of solar-absorbing functional polydopamine (PDA) on the surface of PW@MOF for photothermal conversion and storage. As an efficient photon harvester, PDA coating endows PW@MOF/PDA composite PCMs with excellent photothermal conversion and storage properties due to the robust broadband solar absorption capability in the UV–vis region. Resultantly, our prepared PW@MOF/PDA composite PCMs exhibit a high photothermal conversion and storage efficiency of 91.2%, while that of PW@MOF composite PCMs is only zero. In addition, PW@MOF/PDA composite PCMs also exhibit excellent thermal stability, shape stability, energy storage stability, and photothermal conversion stability. More importantly, this coating strategy is universal by integrating different MOFs and solar absorbers, showing the potential to accelerate the major breakthroughs of high-efficiency MOF-based photothermal composite PCMs in solar energy utilization.  相似文献   

19.
The aim of this study is to investigate the melting/freezing characteristics of paraffin by adding Cu nanoparticles. Cu/paraffin composite phase change materials (PCMs) were prepared by a two-step method. The effects of Cu nanoparticles on the thermal conductivity and the phase change heat transfer of PCMs were investigated by the Hot Disk thermal constants analyzer and infrared monitoring methods, respectively. The maximum thermal conductivity enhancements up to 14.2% in solid state and 18.1% in liquid state are observed at the 2?wt% Cu/paraffin. The photographs of infrared monitoring suggest that the melting and freezing rates of Cu/paraffin are enhanced. For 1?wt% Cu/paraffin, the melting and freezing times can be saved by about 33.3 and 31.6%, respectively. The results provide that adding nanoparticles is an efficient way to enhance the phase change heat transfer of PCMs.  相似文献   

20.
The use of phase change materials (PCMs) in thermal storage is not a new concept, but engineers are continually finding new ways to utilize them in a wide range of applications. A PCM takes advantage of high latent heat in the phase change process to store large amounts of heat while undergoing only a small change in temperature. This property makes PCMs suitable for thermal storage purposes in a wide range of engineering applications. Due to the nature of these applications, it is vital to have a precise knowledge of the thermal characteristics of any PCM. Unfortunately, due to the low thermal conductivities and high latent heats found in PCMs, current measuring tools such as differential scanning calorimetry, provide inconsistent results. This paper conjectures that these errors come from the effects of low thermal diffusivity samples as well as improper data analysis methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号