首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 596 毫秒
1.
In the present work, the effect of In and Zn on some thermo–physical properties (thermal conductivity, diffusivity and specific heat per unit volume) of amorphous Se (a-Se) have been studied. For this, simultaneous measurements of effective thermal conductivity (λe) and effective thermal diffusivity (χe) are used at room temperature for twin pellets of Se, Se90In10 and Se90Zn10 alloys using transient plane source (TPS) technique. It has been found that In and Zn additives changes significantly the values of thermo-physical properties (thermal conductivity, diffusivity and specific heat per unit volume) of a-Se studied in the present work. The results have been analyzed in terms of average bond strength and effective molecular weight of the binary alloys.  相似文献   

2.
n-Type (Bi2Te3)0.9–(Bi2−xCuxSe3)0.1 (x=0–0.2) alloys with Cu substitution for Bi were prepared by spark plasma-sintering technique and their structural and thermoelectric properties were evaluated. Rietveld analysis reveals that approximate 9.0% of Bi atomic sites are occupied by Cu atoms and less than 4.0 wt% second phase Cu2.86Te2 precipitated in the Cu-doped parent alloys. Measurements show that an introduction of a small amount of Cu (x0.1) can reduce the lattice thermal conductivity (κL), and improve the electrical conductivity and Seebeck coefficient. An optimal dimensionless figure of merit (ZT) value of 0.98 is obtained for x=0.1 at 417 K, which is obviously higher than those of Cu-free Bi2Se0.3Te2.7 (ZT=0.66) and Ag-doped alloys (ZT=0.86) prepared by the same technologies.  相似文献   

3.
The thermal conductivity, thermal diffusivity and specific heat per unit volume of twin pellets of Se75Te15?Cx Cd10In x (x?=?0, 5, 10 and 15) glasses, were carried out at room temperature by transient plane source technique. Results indicated that both values of thermal conductivity (??) and thermal diffusivity (??) are varied with In (indium) content and highest for 5?at.% of In, whereas the specific heat per unit volume is almost constant with increase of indium concentration. This shows that Se75Te10Cd10In5 glass can be considered as a critical composition at which the alloy becomes chemically ordered and most thermally stable than other compositions. This compositional dependence behaviour of thermal conductivity and thermal diffusivity can explained in terms of iono-covalent type bond which In makes with Se and Te as it is incorporated in Se?CTe?CCd glasses.  相似文献   

4.
Ag-doped n-type (Bi2Te3)0.9-(Bi2−xAgxSe3)0.1 (x=0-0.4) alloys were prepared by spark plasma sintering and their physical properties evaluated. When at low Ag content (x=0.05), the temperature dependence of the lattice thermal conductivity follows the trend of (Bi2Te3)0.9-(Bi2Se3)0.1; while at higher Ag content, a relatively rapid reduction above 400 K can be observed due possibly to the enhancement of scattering of phonons by the increased defects. The Seebeck coefficient increases with Ag content, with some loss of electrical conductivity, but the maximum dimensionless figure of merit ZT can be obtained to be 0.86 for the alloy with x=0.4 at 505 K, about 0.2 higher than that of the alloy (Bi2Te3)0.9-(Bi2Se3)0.1 without Ag-doping.  相似文献   

5.
In this study, we have studied the effect of elements Ag, Cd, and Sn as chemical modifiers on some thermal transport properties (thermal conductivity, diffusivity, and specific heat per unit volume) of amorphous Se. Concurrent measurements of thermal transport properties such as effective thermal conductivity (??e), thermal diffusivity (??e), and specific heat per unit volume (??C v) are used at room temperature for twin pellets of pure Se- and Se-based binary Se98M2 (M?=?Ag, Cd, and Sn) alloys using transient plane source technique. We have also determined the thermal inertia I T using the experimental values of thermal conductivity and specific heat per unit volume for present amorphous alloys. The increasing sequence of measured thermal transport properties is also discussed.  相似文献   

6.
The TlAs2Se4-Tl3As2Se3Te3 system was studied using differential thermal analysis (DTA), powder X-ray diffraction, microstructure observation, and microhardness and density measurements. A phase diagram of the title system was constructed. This system is a quasi-binary join of the TlSe-As2Se3-As2Te3 quasi-ternary system. All alloys of the system under standard conditions are prepared in the glassy form. The system has a eutectic, which contains 50 mol % Tl3As2Se3Te3 and melts at 150°C. The TlAs2Se4-base solid solution in the system extends to 12 mol % Tl3As2Se3Te3, and Tl3As2Se3Te3-based solid solution extends to 20 mol % TlAs2Se4.  相似文献   

7.
The new compounds K12Ta6Se35 and KTaTe3 have been synthesized through the reaction of Ta metal with a K2Qn(Q = Se, Te) flux. K12Ta6Se35, crystallizes with 4 formula units in space group Pbcn of the orthorhombic system in a cell of dimensions a = 8.3390(17) Å, b = 13.259(3) Å, c = 56.023(11) Å (t = −120 °C). KTaTe3 crystallizes with 20 formula units (or 4 formula units of K5Ta5Te15) in the monoclinic space group P21/c in a cell of dimension a = 7.7177(15) Å, b= 13.826(3) Å, c = 30.981(6) Å, and β = 90.11(3)° (t = −120 °C). Each structure consists of infinite anionic chains of Ta-containing polyhedra well separated by K+ cations. In K12Ta6Se35 there are Ta2Se11 units formed by the face sharing of two TaSe7 elongated bipyramids. These Ta2Se11 units are in turn interconnected by Se2 and Se3 units to form α1[Ta6Se3Se3512−]infinite chains. In KTaTe3, the α1[TaTe3] infinite chains arise from the face sharing of distorted TaTe6 octahedra.  相似文献   

8.
The paper reports on the temperature dependence of the electrical and thermal conductivity, Hall constant, and Seebeck coefficient of Bi2−xInxSe3 (x=0, 0.2, 0.4) single crystals measured over the temperature range from 2 to 300 K. One single-valley conduction band model is used to interpret relations among transport coefficients. The data analysis relies on the use of a mixed carrier scattering mechanism consisting of acoustic scattering and scattering on ionized impurities. The effect of In incorporation into the Bi2Se3 crystal lattice on the individual components of thermal conductivity is evaluated and discussed.  相似文献   

9.
Experimental and theoretical studies of the electronic and optical properties of orthorhombic BaCu2Se2 and BaCu2Te2 are reported. Experimental data include the electrical resistivity, Hall coefficient, Seebeck coefficient, thermal conductivity, and lattice constants for , and optical transmission and diffuse reflectance data at room temperature. Nominally stoichiometric, polycrystalline samples form with hole concentrations inferred from Hall measurements of 2×1018 and 5×1019 cm−3 near room temperature for the selenide and telluride, respectively. The corresponding mobilities are near 15 cm2 V−1 s−1 for both materials. Optical measurements reveal a transition near 1.8 eV in BaCu2Se2, while no similar feature was observed for BaCu2Te2. First principles calculations indicate both materials are direct or nearly direct gap semiconductors with calculated gaps near 1.0 eV and 1.3 eV for the telluride and selenide, respectively, and predict weak absorption below about 2 eV. Transport properties calculated from the electronic structure are also presented.  相似文献   

10.
Six quaternary alkali-metal rare-earth copper tellurides K3Ln4Cu5Te10 (Ln=Sm, Gd, Er), Rb3Ln4Cu5Te10 (Ln=Nd, Gd), and Cs3Gd4Cu5Te10 have been synthesized at 1123 K with the use of reactive fluxes of alkali-metal halides ACl (A=K, Rb, Cs). All crystallographic data were collected at 153 K. These compounds crystallize in space group Pnnm of the orthorhombic system with two formula units in cells of dimensions (A3Ln4, a, b, c (Å)): K3Sm4, 16.590(2), 17.877(2), 4.3516(5); K3Gd4, 16.552(4), 17.767(4), 4.3294(9); K3Er4, 16.460(4), 17.550(4), 4.2926(9); Rb3Nd4, 17.356(1), 17.820(1), 4.3811(3); Rb3Gd4, 17.201(2), 17.586(2), 4.3429(6); Cs3Gd4, 17.512(1), 17.764(1), 4.3697(3). The corresponding R1 indices for the refined structures are 0.0346, 0.0315, 0.0212, 0.0268, 0.0289, and 0.0411. The three K3Ln4Cu5Te10 structures belong to one structure type and the Rb3Ln4Cu5Te10 (Ln=Nd, Gd) and Cs3Gd4Cu5Te10 structures belong to another one, the difference being the location of one of the three unique Cu atoms. Both structure types are three-dimensional tunnel structures that contain similar Ln/Te fragments built from LnTe6 octahedra and CuTe4 tetrahedra. The CuTe4 tetrahedra form 1[CuTe5−3] and 1[CuTe3−2] chains. The alkali-metal atoms, which are in the tunnels, are coordinated to seven or eight Te atoms.  相似文献   

11.

Abstract  

The intermetallic zinc compounds La3Pd4Zn4 and La3Pt4Zn4 were synthesized by induction melting of the elements in sealed tantalum tubes. The structures were refined from X-ray single-crystal diffractometer data: Gd3Cu4Ge4 type, Immm, a = 1,440.7(5), b = 743.6(2), c = 419.5(2) pm, wR 2 = 0.0511, 353 F 2 for La3Pd4Zn4; and a = 1,439.9(2), b = 748.1(1), c = 415.66(6) pm, wR 2 = 0.0558, 471 F 2 for La3Pt4Zn4 with 23 variables per refinement. The palladium (platinum) and zinc atoms build up a three-dimensional polyanionic [Pd4Zn4] (260–281 pm Pd–Zn) and [Pt4Zn4] (260–279 pm Pt–Zn) network in which the lanthanum atoms fill cavities of CN 14 (6 Pd/Pt + 8 Zn for La1) and CN 12 (6 Pd/Pt + 6 Zn for La2), respectively. The copper position of the Gd3Cu4Ge4 type is occupied by zinc and the two crystallographically independent germanium sites by palladium (platinum), a new coloring pattern for this structure type. Within the [Pd4Zn4] and [Pt4Zn4] the Pd2 and Pt2 atoms form Pd2–Pd2 (291 pm) and Pt2–Pt2 (296 pm) dumbbells. The structures of La3Pd4Zn4 and La3Pt4Zn4 are discussed with respect to the prototype Gd3Cu4Ge4 and the Zintl phase Sr3Li4Sb4. Temperature-dependent magnetic susceptibility measurements indicate diamagnetism for La3Pt4Zn4 and Pauli paramagnetism for La3Pd4Zn4.  相似文献   

12.
Bulk samples of Se85-xTe15Bix glassy alloys are obtained by melt quenching technique. Differential scanning calorimetry has been applied to determine the thermal properties of Se-rich Se85-xTe15Bix glassy alloys at different heating rates. The glass transition temperature (T g) is found to shift to a higher temperature with increasing heating rate and with Bi addition. Activation energy and fragility of the system is also calculated. Specific heat is evaluated and a jump in heat capacity is observed at T g. Theoretical parameters viz; density, molar volume, number of atoms per unit volume, lone pair electrons and cohesive energy of the system are also reported.  相似文献   

13.
The intermetallic cerium compounds Ce3-Pd3Bi4, CePdBi, and CePd2Zn3 were synthesized from the elements in sealed tantalum ampoules in an induction furnace. The compounds were characterized by X-ray powder and single crystal diffraction: CeCo3B2 type (ordered version of CaCu5), P6/mmm, a = 538.4(4), c = 427.7(4) pm, wR2 = 0.0540, 115 F 2 values, 9 variables for CePd2Zn3 and Y3Au3Sb4 type, I [`4]{\bar 4} 3d, a = 1005.2(2) pm, w R2 = 0.0402, 264 F 2 values, 9 variables for Ce3Pd3Bi4, and MgAgAs type, a = 681.8(1) pm for CePdBi. The bismuthide structures are build up from three-dimensional networks of corner-sharing PdBi4 tetrahedra with Pd–Bi distances of 281 (Ce3Pd3Bi4) and 296 pm (CePdBi), respectively. The cerium atoms are located in larger voids of coordination number 12 (Ce3Pd3Bi4) and 10 (CePdBi). In CePd2Zn3 the cerium atoms fill larger channels within the three-dimensional [Pd2Zn3] network with 18 (6 Pd + 12 Zn) nearest neighbors. The three compounds contain stable trivalent cerium with experimental magnetic moments of μeff = 2.70(2), 2.48(1), and 2.49(1) μB/Ce atom for CePd2Zn3, Ce3Pd3Bi4, and CePdBi, respectively. Susceptibility and specific heat data gave no hint for magnetic ordering down to 2.1 K.  相似文献   

14.
The valence band (VB) density of states and the binding energies of the weakly bound core levels have been measured by XUV photoelectron spectroscopy using synchrotron radiation for four V–VI layered compounds. Chemical shifts of the core levels are determined which support the partial ionicity of the bonds involved. The chemical shifts of the emission from two unequivalent crystal sites were shown to differ by less than 30 meV for the compounds Bi2Te3, Bi2Se3 and Sb2Te3.VB and core-level photoemission spectra for the V–VI compounds Bi2Te3, Bi2Se3, Sb2Te3 and Se2Te2Se have been presented. Chemical shifts of the Te 4d, Bi 5d, Sb 4d and Se 3d levels were determined, indicating partial ionicity of the mainly covalent bonds involved. Chemical-shift differences originating from atoms at two different crystal sites are <30 meV. In a simple model this implies that similar charge transfers do occur even though completely different bond orbitals were proposed for the and the AB(2) bonds. Finally, the fact that no surface core-level shifts were observed tends to confirm the very weak influence of the van der Waals-like bonds on the B(2) atoms.  相似文献   

15.
Two new quaternary strontium selenium(IV) and tellurium(IV) oxychlorides, namely, Sr3(SeO3)(Se2O5)Cl2 and Sr4(Te3O8)Cl4, have been prepared by solid-state reaction. Sr3(SeO3)(Se2O5)Cl2 features a three-dimensional (3D) network structure constructed from strontium(II) interconnected by Cl, SeO32− as well as Se2O52− anions. The structure of Sr4(Te3O8)Cl4 features a 3D network in which the strontium tellurium oxide slabs are interconnected by bridging Cl anions. The diffuse reflectance spectrum measurements and results of the electronic band structure calculations indicate that both compounds are wide band-gap semiconductors.  相似文献   

16.
The compounds Ti3Se4?xTex are prepared. Their structure closely depends upon thermal conditions of synthesis. Treatments at 600°C and quenching give pure monoclinic compounds isotypic with Ti3Se4 and Ti3Te4 in narrow ranges of composition (x ? 0.5 and x ? 3.5). At 800°C, polycrystalline pure products are obtained with an hexagonal B8 unit cell (a′, ?') when x ? 3. At 1000°C, for x ? 3.5, almost pure compounds crystallize with that same hexagonal unit cell; an orthorhombic lattice is observed for x = 4.Moreover, twinning is observed on single crystals obtained after quenching from 800 or 1000°C, with x = 1, 2, 3 and 4. These crystals seem to exhibit an hexagonal unit cell (2a′, 2?'), but in fact their lattice is orthorhombic or monoclinic with a real I unit cell: aa′√3, ba′, c ≈ 2c′. The explanation of the phenomenon allows us to correct some misinterpretations found in the literature on “TiTe” single crystals.  相似文献   

17.
Quaternary selenides Sn2Pb5Bi4Se13 and Sn8.65Pb0.35Bi4Se15 were synthesized from the elements in sealed silica tubes; their crystal structures were determined by single-crystal and powder X-ray diffraction. Both compounds crystallize in monoclinic space group C2/m (No.12), with lattice parameters of Sn2Pb5Bi4Se13: a = 14.001(6) Å, b = 4.234(2) Å, c = 23.471(8) Å, V = 1376.2(1) Å3, R1/wR2 = 0.0584/0.1477, and GOF = 1.023; Sn8.65Pb0.35Bi4Se15: a = 13.872(3) Å, b = 4.2021(8) (4) Å, c = 26.855(5) Å, V = 1557.1(5) Å3, R1/wR2 = 0.0506/0.1227, and GOF = 1.425. These compounds exhibit tropochemical cell-twinning of NaCl-type structures with lillianite homologous series L(4, 5) and L(4, 7) for Sn2Pb5Bi4Se13 and Sn8.65Pb0.35Bi4Se15, respectively. Measurements of electrical conductivity indicate that these materials are semiconductors with narrow band gaps; Sn2Pb5Bi4Se13 is n-type, whereas Sn8.65Pb0.35Bi4Se15 is a p-type semiconductor with Seebeck coefficients −80(5) and 178(7) μV/K at 300 K, respectively.  相似文献   

18.
The space group symmetry and crystal structure of Tl3SbS3−xSex compounds in the composition range 0 < x < 3 have been determined by a combination of powder X-ray diffraction, electron diffraction, and high-resolution electron microscopy. The incongruently melting compound Tl3SbSe3 has been shown to crystallize in cubic space group P213 with a = 9.435Å in a structure related to that of Langbeinite. The convergent beam electron diffraction pattern of Tl3SbS3 is in accord with the space group R3m determined by X-ray diffraction. The cubic Langbeinite-type structure is found for Tl3SbS3−xSex for 0.5 < x < 3 and for Tl3SbyAs1−ySe3 for 0.077 < y < 1.0. A five-component compound Tl3Sb0.5As0.5Se1.5S1.5 was also found to be cubic.  相似文献   

19.
Barium-zinc decametaphosphate, Ba2Zn3P10O30, is monoclinic, P2n, with the unit cell parameters a = 21.738(15), b = 5.356(5), c = 10.748(8) Å, β = 99.65(3)° and Z = 2. The crystal structure was solved with a final R value of 0.041. This salt provides the first structural evidence for the existence of a 10-phosphorus ring anion.  相似文献   

20.
The structure of Ni0.85Mo6Te8 was refined from single-crystal X-ray diffraction data at room temperature. It is triclinic, space group
; 1619 reflections, 75 refined parameters, R = 0.031. The Mo atoms form distorted octahedral clusters (2.69 Å ≤ dintra[Mo---Mo] ≤ 2.81 Å; 3.58 Å < dinter[Mo---Mo]). The Ni atoms are disordered (site occupancy: 0.423(7); d[Ni---Ni] = 2.586(6) Å), and interact strongly with one Mo6 cluster (d[Ni---Mo] = 2.603(3) and 2.958(3) Å), and weakly with another (d[Ni---Mo] = 2.985(3) Å). The structure transforms at 1057(5) K into a rhombohedral modification (ahex = 10.457(2) Å, chex = 11.866(3) Å at 1073 K). Measurements on powders suggest metallic conductivity (5.1 × 10−4 Ω-cm at 293 K) and weakly temperature-dependent paramagnetism (110 × 10−6 emu/g at 100 K).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号