首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
基于单粒子导心运动代码ORBIT,采用测试粒子模拟方法,研究了托卡马克等离子体内部不同径向位置处局域磁场扰动对高能量离子的损失的影响。研究表明,在局域磁扰动主要分布在某磁面附近、其环向具有类似纹波场形式下,可造成一些靠近等离子体中心区域的高能量离子损失,但对靠近等离子边界的离子损失影响相对不大。这些损失的高能量离子均为捕获离子,离子的投掷角越大就越容易损失。此外,造成高能量离子最大损失率的局域场径向位置与这些损失离子的初始径向位置通常存在一定的偏移,而且这个偏移与这些离子的能量密切相关。当局域场出现在某些位置时,能量较低的离子会有一定的损失,能量较高的离子反而不会损失。  相似文献   

2.
Based on ORBIT code of a guiding center motion of single particle, the loss of energetic ions in different radial positions of tokamak plasma is studied by using test particle simulation method. The results show that the local magnetic perturbations can cause loss of many energetic ions near the central region of the plasma, but they have little effect on the ion loss near the plasma boundary, assuming that the local field is mainly located near a magnetic surface and its toroidal field is similar to the ripple field. These energetic ions are trapped ions, and the greater their pitch angle is, the easier they lose. In addition, the radial position of the local field that causes the maximum loss rate of energetic ions is usually offset from the initial radial position of these loss ions, and this shift is closely related to the energy of these ions. When the local field appears in certain locations, the ions of lower energy have some loss, but the ions higher energy does not lose.  相似文献   

3.
窦银萍  谢卓  宋晓林  田勇  林景全 《物理学报》2015,64(23):235202-235202
本文对Gd靶激光等离子体极紫外光源进行了实验研究, 在 6.7 nm附近获得了较强的辐射, 并研究了6.7 nm 附近光辐射随打靶激光功率密度变化的规律以及收集角度对极紫外辐射的影响. 同时, 对平面Gd靶激光等离子光源的离子碎屑角分布进行了测量, 发现从靶面的法线到沿着靶面平行方向上Gd离子数量依次减少. 进一步研究结果表明采用0.9 T外加磁场的条件下可取得较好的Gd 离子碎屑阻挡效果.  相似文献   

4.
A plasma was produced by a high frequency electric quadrupole field (v=200 Megacycles) at gas pressures of 10?4 to 5·10?3 mm Hg in a quarz glass torus. The torus was placed between the poles of an air-core betatron with the following properties: radius of equilibrium orbit 20 cm, maximum accelerating field strength 80 V/cm, end energy 1.5 MeV. Associated with conduction currents of some 100 A, energetic Bremsstrahlung was observed and attributed to 1,2 MeV electrons. The number of accelerated electrons was of the order of 1011 per pulse. The intensity and energy of the radiation, together with the time dependence of the plasma current, were observed as function of different parameters, such as the gas pressure, high frequency amplitude, induced acceleration field strength, for different gases. The energetic radiation disappears when, because of the self-induced magnetic field, the stability condition for the betatron equilibrium is no longer fulfilled.  相似文献   

5.
A new ion guide, with an additional function having an infinite gas thickness by using a strong magnetic field, is proposed, which enables us to stop energetic radioactive nuclear ions in He gas. The stopped singly charged ions, guided in a dc field with a focusing force generated by an rf field in the gas, are extracted with a SPIG (sextupole rf ion guide) of a focusing device for a spectroscopic study of radioactive nuclei. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
We investigate the extreme-ultraviolet (EUV) emission from targets that contain tin as an impurity and the advantages of using these targets for ion debris mitigation by use of a magnetic field. The EUV spectral features were characterized by a transmission grating spectrograph. The in-band EUV emission energy was measured with a calorimeter of absolute calibration. The ion flux coming from the plume was measured with a Faraday cup. Our studies indicate that 0.5% Sn density is necessary to obtain a conversion efficiency very close to that of full-density Sn. The use of Sn-doped low-Z targets provides a narrower unresolved transition array and facilitates better control of energetic ions in the presence of a moderate magnetic field of 0.64 T.  相似文献   

7.
We investigate the existence and propagation of low-frequency (in comparison to ion cyclotron frequency) electrostatic ion waves in highly dense inhomogeneous astrophysical magnetoplasma comprising relativistic degenerate electrons and non-degenerate ions. The dispersion equation is obtained by Fourier analysis under mean-field quantum hydrodynamics approximation for various limits of the ratio of rest mass energy to Fermi energy of electrons, relevant to ultra-relativistic, weakly-relativistic and non-relativistic regimes. It is found that the system admits an oscillatory instability under certain condition in the presence of velocity shear parallel to ambient magnetic field. The dispersive role of plasma density and magnetic field is also discussed parametrically in the scenario of dense and degenerate astrophysical plasmas.  相似文献   

8.
A new framework is introduced for kinetic simulation of laser–plasma interactions in an inhomogeneous plasma motivated by the goal of performing integrated kinetic simulations of fast-ignition laser fusion. The algorithm addresses the propagation and absorption of an intense electromagnetic wave in an ionized plasma leading to the generation and transport of an energetic electron component. The energetic electrons propagate farther into the plasma to much higher densities where Coulomb collisions become important. The high-density plasma supports an energetic electron current, return currents, self-consistent electric fields associated with maintaining quasi-neutrality, and self-consistent magnetic fields due to the currents. Collisions of the electrons and ions are calculated accurately to track the energetic electrons and model their interactions with the background plasma. Up to a density well above critical density, where the laser electromagnetic field is evanescent, Maxwell’s equations are solved with a conventional particle-based, finite-difference scheme. In the higher-density plasma, Maxwell’s equations are solved using an Ohm’s law neglecting the inertia of the background electrons with the option of omitting the displacement current in Ampere’s law. Particle equations of motion with binary collisions are solved for all electrons and ions throughout the system using weighted particles to resolve the density gradient efficiently. The algorithm is analyzed and demonstrated in simulation examples. The simulation scheme introduced here achieves significantly improved efficiencies.  相似文献   

9.
Nano-sized antimony-doped tin oxide (ATO) particles were synthesized using DC arc plasma jet. The precursors SnCl4 and SbCl5 were injected into the plasma flame in the vapor phase. ATO powder could conveniently be synthesized without any other post-treatment in this study. To control the doping amount of antimony in the ATO particles, the Sb/Sn molar ratio was used as an operating variable. To study the effect of carrier gas on the particle size, argon and oxygen gases were used. The results of XRD and TGA show that all Sb ions penetrated the SnO2 lattice to substitute Sn ions. With the increased SbCl5 concentration in source material, the Sb doping level was also increased. The size of the particles synthesized using the argon carrier gas was much smaller than that of the particles prepared using the oxygen carrier gas. For the argon gas, PSA results and SEM images reveal that the average particle size was 19 nm. However, for the oxygen gas, the average particle size was 31 nm.  相似文献   

10.
A thin Sn film was investigated as a mass-limited target for an extreme ultraviolet (EUV) lithography source. It was found that those energetic ions that are intrinsic with the mass-limited Sn target could be efficiently mitigated by introducing a low-energy prepulse. High in-band conversion efficiency from a laser to 13.5 nm EUV light could be obtained using an Sn film with a thickness down to 30 nm when irradiated by dual laser pulses. It was shown that the combination of dual pulse and inert Ar gas could fully mitigate ions with a low ambient pressure nearly without the penalty of the absorption of the EUV light.  相似文献   

11.
In order to make sufficient use of reactive cylindrical magnetron plasma for depositing compound thin films, it is necessary to characterize the hysteresis behavior of the discharge. Cylindrical magnetron plasmas with different targets namely titanium and aluminium are studied in an argon/oxygen and an argon/nitrogen gas environment respectively. The aluminium and titanium emission lines are observed at different flows of reactive gases. The emission intensity is found to decrease with the increase of the reactive gas flow rate. The hysteresis behavior of reactive cylindrical magnetron plasma is studied by determining the variation of discharge voltage with increasing and then reducing the flow rate of reactive gas,while keeping the discharge current constant at 100 m A. Distinct hysteresis is found to be formed for the aluminium target and reactive gas oxygen. For aluminium/nitrogen, titanium/oxygen and titanium/nitrogen, there is also an indication of the formation of hysteresis; however, the characteristics of variation from metallic to reactive mode are different in different cases. The hysteresis behaviors are different for aluminium and titanium targets with the oxygen and nitrogen reactive gases, signifying the difference in reactivity between them. The effects of the argon flow rate and magnetic field on the hysteresis are studied and explained.  相似文献   

12.
The collisionless interaction of an expanding high–energy plasma cloud with a magnetized background plasma in the presence of a dipole magnetic field is examined in the framework of a 2D3V hybrid (kinetic ions and massless fluid electrons) model. The retardation of the plasma cloud and the dynamics of the perturbed electromagnetic fields and the background plasma are studied for high Alfvén–Mach numbers using the particle–in–cellmethod. It is shown that the plasma cloud expands excluding the ambient magnetic field and the background plasma to form a diamagnetic cavity which is accompanied by the generation of a collisionless shock wave. The energy exchange between the plasma cloud and the background plasma is also studied and qualitative agreement with the analytical model suggested previously is obtained (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
During high power CO2 laser beam welding, the plasma above the keyhole has a shielding effect that it not only absorbs part of the laser energy but also defocuses the laser beam. As a result, the welding efficiency and the aspect ratio of the welds are influenced. In order to reduce the effect of plasma, helium as a plasma control gas has been used successfully and effectively. However, the cost of helium in Southeast Asia is extremely high and therefore the production cost is significantly increased when helium is used as a continuous bleeding plasma control gas. To search for an alternative plasma control technique, feasibility in using magnetic effect as a control tool is explored in this paper. The influences of the magnetic field strength, laser power, welding speed, field direction and shielding gas (e.g. helium and argon) on the penetration depth and the width of bead were also investigated. Experimental results indicated that the magnetic field can influence the shielding effect of the plasma without using plasma control gas. It was found that at a suitable magnetic field strength the penetration depth was increased by about 7%, but no significant difference on the width of bead was found. Moreover, it was shown that the plasma control effect can be achieved at low magnetic field strength and the penetration depth can be increased significantly under argon atmosphere.  相似文献   

14.
The temporal evolution of a plasma cloud released in an ambient plasma is studied. Time-dependent Vlasov equations for both electrons and ions, as well as the self-consistent electric field parallel to the ambient magnetic field, are solved. The initial cloud is considered to consist of cold, warm, and hot electrons with temperatures of approximately 0.2 eV, 2 eV, and 10 eV, respectively. It is found that the minor hot electrons escape the cloud; their velocity distribution function shows the typical time-of-flight dispersion feature, i.e. the average drift velocity of the escaping electrons is proportional to the distance from the cloud. The major warm electrons expand along the magnetic field lines with the corresponding ion-acoustic speed. The combined effect of the escaping hot electrons and the expanding warm ones sets up an electric potential structure that accelerates the ambient electrons into the cloud. Thus, the energy loss due to the electron escape is partly replenished. The electric field distribution in the potential structure depends on the stage of the evolution; before the rarefaction waves propagating from the edges of the cloud reach its center, the electric fields point into the cloud. After this stage the cloud divides into two subclouds, each having its own bipolar electric field. The effects of collisions on the evolution of plasma clouds are also discussed. The relevance of the results seen from the calculations are discussed in the context of space experiments on critical ionization velocity  相似文献   

15.
MH Rashid  RK Bhandari 《Pramana》2002,59(5):781-794
The conventional type of magnetic well is formed by superposition of two types of magnetic field, axial bumpy field and radial multipole field. It is used to contain plasma that consists of neutrals, ions and electrons. These particles are in constant motion in the well and energetic electrons create plasma by violent collisions with neutrals and ions. The confined electrons are constantly heated by ECR technique in the presence of magnetic field. In this paper it has been shown theoretically that how the electron motion is influenced in terms of heating, containment and azimuthal uniformity of plasma, by the axial rotation of the multipole magnetic field [1,2]. Afterwards, the feasibility of achieving a rotating magnetic multipole field is discussed to some extent. And it is seen that it is not beyond the capability of the scientific community in the present scenario of the advanced technology. Presently, it can be achieved for lesser field and slightly larger size of the multipole electromagnet and can be used for improvement of the ECR ion source (ECRIS).  相似文献   

16.
《Physics letters. A》2002,305(5):245-250
It is shown that the increase of β (the ratio of plasma pressure to the magnetic field pressure) may change the character of the influence of trapped energetic ions on MHD stability in spherical tori. Namely, the energetic ions, which stabilize MHD modes (such as the ideal kink mode, collisionless tearing mode and semi-collisional tearing mode) at low β, have a destabilizing influence at high β unless the radial distribution of the energetic ions is very peaked.  相似文献   

17.
强流脉冲离子束辐照靶材产生烧蚀等离子体向背景气体中传播与向真空中传播不同,包括喷发等离子体与背景气体的相互作用.本文建立了该过程的二维气体动力学模型,计算了等离子体向压强范围从10-6大气压到大气压背景气体中传播时的情况.结果表明,背景气体压强不同时,等离子体传播的现象也不相同.向真空中可以自由膨胀,向大气压中膨胀受限;当背景气压在千分之一大气压左右时,等离子体在背景气体中形成“雪犁”状,羽状等离子体出现快速和慢速传播分离现象.  相似文献   

18.
The ablation of Cd has been performed by employing Q-switched Nd: YAG 10 ns laser pulses with a central wavelength of 1064 nm for a pulsed energy of 200 mJ under various ambient environments of argon, air and helium. The optical emission spectroscopy of Cd plasma has been studied under different filling pressures of shield gases ranging from 5 torr to 760 torr using LIBS spectrometer system. The effect of different gases and their pressures on the intensity of spectral emission, electron temperature and density of the laser-produced plasma has been investigated. SEM analysis has been performed to investigate the dependence of surface morphological changes of an irradiated target on the nature and pressure of an ambient gas. A strong correlation has revealed the vital role of electron temperature and density of laser-induced plasma for the surface modification of Cd. These results strongly indicate that the nature and pressure of the ambient atmosphere is one of the controlling factors of the plasma characteristics, as well as the factors related to the laser energy absorption for surface modification.  相似文献   

19.
The kinetic energy of ions in dielectric barrier discharge plasmas are analysed theoretically using the model of binary collisions between ions and gas molecules. Langevin equation for ions in other gases, Blanc law for ions in mixed gases, and the two-temperature model for ions at higher reduced field are used to determine the ion mobility. The kinetic energies of ions in CH4 + Ar(He) dielectric barrier discharge plasma at a fixed total gas pressure and various Ar (He) concentrations are calculated. It is found that with increasing Ar (He) concentration in CH4 + Ar (He) from 20% to 83%, the CH4+ kinetic energy increases from 69.6 (43.9) to 92.1 (128.5)eV, while the Ar+ (He+) kinetic energy decreases from 97 (145.2) to 78.8 (75.5)eV. The increase of CH4+ kinetic energy is responsible for the increase of hardness of diamond-like carbon films deposited by CH4 + Ar (He) dielectric barrier discharge without bias voltage over substrates.  相似文献   

20.
Abstract

A comprehensive review of important progress achieved over the last 30 years regarding knowledge of laser-induced plasmas generated by CO2 and Nd:YAG lasers in a variety of ambient gases is presented in this article, as well as research results on the extension of laser-induced breakdown spectroscopy (LIBS) for quantitative analysis of light elements, especially hydrogen and deuterium. First, the formation of shock wave–induced expanding secondary plasma in low-pressure ambient gases is discussed along with the dynamic characteristics of the secondary plasma expansion process. The unique advantages of low-pressure gas plasma are explained in relation to the successful detection of the sharp H and D emission lines. The experimental results using helium ambient gas are presented with emphasis on the role of He gas plasma in introducing an additional delayed excitation mechanism involving the helium metastable excited state, which resulted in the complete resolution of H and D emission lines, separated by only 0.18 nm. The development of a laser precleaning treatment and special double-pulse techniques further produced a linear calibration line with zero intercept applicable to quantitative H and D analyses of zircaloy sample, with either low- or high-pressure ambient He gas. More recent use of a transversely excited atmospheric (TEA) CO2 laser in place of an Nd:YAG laser has demonstrated the much desired larger excited helium plasma and thereby resulted in significant emission enhancement and improved detection sensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号