首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
The aim of this third part is to analyze the structure and properties of the interfacial region between carbon fibers and PEEK as a function of different thermal conditioning treatments. First, it is shown by means of optical microscopy that the interfacial zone is not different from the bulk matrix when standard cooling conditions are used. On the contrary, a transcrystalline interphase is formed near the carbon fiber surface in systems that have been subjected to isothermal treatments. By comparison with previous results concerning the mechanical properties of the fiber–matrix interface, it appears that the interfacial shear strength decreases in the presence of a transcrystalline interphase or when the crystallization rate of PEEK increases. Moreover, it seems that the “constraint state” of the amorphous phase of PEEK near the fiber surface could also play a role in the interfacial shear strength. Secondly, a method is proposed in order to estimate the elastic modulus of crystalline interphases. It seems that this modulus is strongly dependent on the crystallization rate of the polymer. Finally, the determination of the stress-free temperature, defined as the temperature at which a longitudinal compressive stress just appears on the carbon fiber during the processing of the composites, is performed by recording the acoustic events corresponding to the fragmentation process in single-fiber composites. The results confirm that the crystallization rate and the “constraint state” of the amorphous phase of the matrix play an important role in the mechanical behavior of carbon fiber–PEEK interfaces.  相似文献   

2.
In the second part of this general study, the carbon fiber–PEEK interfacial shear strength is measured by means of a fragmentation test on single-fiber composites. Different thermal treatments (continuous cooling from the melt, isothermal treatments and long melting temperature time) are applied to these model composites prior to testing. The results are systematically compared with the previously determined reversible work of adhesion between carbon fiber and PEEK. It is shown that physical interactions at the interface determine, to a large extent, the magnitude of the interfacial shear strength between both materials. However, it appears that the magnitude of the stress transfer from the matrix to the fiber is affected either by the existence of an interfacial layer or by a preferential orientation of the polymer chains near the fiber surface. The results obtained on systems that have been subjected to isothermal treatments (isothermal crystallization of PEEK) seem to confirm the existence of a transcrystalline interphase, the properties of which are dependent upon the crystallization rate of the matrix and the interfacial adhesion energy.  相似文献   

3.
This work aims at producing and characterizing unidirectional carbon/epoxy composites containing different fractions of paraffin microcapsules (MC) for thermal management applications. The viscosity of the epoxy/MC mixtures increases with the MC content, thereby increasing the final matrix weight and volume fraction and reducing that of the fibers. This is at the basis of the decrease in mechanical properties of the laminates with high MC concentration (the elastic modulus decreases up to 53% and the flexural strength up to 67%), but the application of theoretical models shows that this decrease is only due to the lower fiber volume fraction, and not to a change in the properties of the constituents or the fiber/matrix interaction. The MC phase is preferentially distributed in the interlaminar zone, which leads to a thickening of this region and a decrease in matrix-related properties, such as the interlaminar shear strength, which decreases of up to 70%. However, a modest MC fraction causes an increase in the mode I interlaminar fracture toughness of 48%, due to the introduction of new toughening mechanisms. On the other hand, an excessive MC content lets the crack propagating through the matrix and not at the fiber/matrix interface, thereby reducing the toughening mechanism provided by fiber bridging. For the thermal properties, the phase change enthalpy increases with the MC fraction up to 48.7 J/g, and this is reflected in better thermal management performance, as proven by thermal imaging tests. These results are promising for the development of multifunctional polymer composites with thermal energy storage and thermal management properties, and future works will be focused on a deeper study of the micromechanical properties of PCM microcapsules and on the improvement of the capsule/matrix adhesion.  相似文献   

4.
The mechanical properties of carbon fiber composites depend on the interfacial strength between fiber and epoxy matrix. Different poly (amido amine) (PAMAM) dendrimers were grafted onto carbon fiber to improve the interfacial strength of the resulting composites. Functional groups on the carbon fiber surface were examined by X-ray photoelectron spectroscopy. The surface morphology of the resulting materials was characterized by scanning electron microscopy and atomic force microscope. The characterization results revealed that PAMAM dendrimers were chemically grafted onto the surface of carbon fiber. More importantly, the mechanical properties of the resulting composites were enhanced owing to the presence of sufficient functional groups on the carbon fiber surface. In addition, after PAMAM containing chair conformations were grafted, the interlaminar shear strength had the highest increase of 53.13%, higher than that of the fiber grafted with PAMAM containing terminated linear amine. This work provides an alternative approach to enhance the mechanical properties of fiber composites by controlling the interface between fiber and epoxy matrix.  相似文献   

5.
In the present study, the tensile behavior of quasi-unidirectional glass fiber/polypropylene composites at room and elevated temperatures were investigated by both micro- and macromechanical test methods. In the micromechanical studies, a single fiber fragmentation test was employed for measuring the interfacial shear strength at fiber-polypropylene interface in the temperature range from 23 °C to 90 °C. The results show that interfacial shear strength decreases with increasing testing temperature. In the macromechanical studies, experimental results show that the elastic modulus of polypropylene and transverse elastic modulus of composites are sensitive to the testing temperature. The weakened fiber-polypropylene interface due to elevated temperatures led to the vanishing of “knee” in transverse tensile stress-strain curves. A function was proposed to evaluate the dependence of the elastic modulus of quasi-unidirectional glass fiber/polypropylene composites on the testing temperatures and tested against experimental data. Tensile failure mechanisms of composites were demonstrated to evolve with the testing temperature.  相似文献   

6.
The influence of chain lengths on interfacial performances of carbon fiber/polyarylacetylene composites was studied. For this purpose, four coupling agents, methyltrimethoxysilane, propyltrimethoxysilane, octyltrimethoxysilane and dodecyltrimethoxysilane, were grafted onto fiber surface to obtain different chain lengths. The resulting carbon fiber surface was characterized by XPS and dynamic contact angle test. Interfacial adhesion in the resulting fiber reinforced polyarylacetylene resin composites was also evaluated by fracture morphology analysis and interfacial shear strength test. It was found that the interfacial adhesion in composites greatly increased with chain lengths on fiber surface. The improvement of interfacial adhesion was attributed to the interaction between the chain of coupling agents on fiber surface and that of polyarylacetylene resin at the interface. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
In this work, dense molybdenum disulfide (MoS2) nanosheets were grown onto polydopamine (PDA) functionalized aramid fabric (AF) surface via a simple hydrothermal method to improve the wettability between AF surface and polyhexahydrotriazine (PHT) resin, thus resulting in stronger AF/resin interfacial bonding. The PDA-assisted surface modification on AF generated a high active interface allowing the nucleation and subsequent growth of MoS2. Moreover, this nanosheet-coated reinforcement fiber enabled the viscous liquid of resin precursor to spread over and form intimate contact with its surface, which eventually promoted the formation of strong interfacial bonding between AF-MoS2 and cured resin matrix. In addition, the enhanced interfacial bonding between the reinforcement and matrix generated stable mechanical interlock within the resulting AF-MoS2/PHT composites, and thus, contributed better thermal stability, higher tensile strength, and tribological properties. Compared with AF/PHT composites, the tensile strength and elongation at break of the AF-MoS2/PHT composites increased by 32.5% and 50%, and the average friction coefficient and wear rate of AF-MoS2/PHT composites decreased by 43.9% and 86.3%, respectively. Furthermore, the composites realized the non-destructive recovery of expensive AF at 25 °C. Overall, our study demonstrates a dependable strategy to construct the recyclable AF-MoS2/PHT composites, which exhibit valuable applications in tribology.  相似文献   

8.
In this work, ozone modification method and air‐oxidationwere used for the surface treatment of polyacrylonitrile(PAN)‐based carbon fiber. The surface characteristics of carbon fibers were characterized by XPS. The interfacial properties of carbon fiber‐reinforced (polyetheretherketone) PEEK (CF/PEEK) composites were investigated by means of the single fiber pull‐out tests. As a result, it was found that IFSS (interfacial shear strength) values of the composites with ozone‐treated carbon fiber are increased by 60% compared to that without treatment. XPS results show that ozone treatment increases the amount of carboxyl groups on carbon fiber surface, thus the interfacial adhesion between carbon fiber and PEEK matrix is effectively promoted. The effect of surface treatment of carbon fibers on the tribological properties of CF/PEEKcomposites was comparativelyinvestigated. Experimental results revealed that surface treatment can effectively improve the interfacial adhesion between carbon fiber and PEEK matrix. Thus the wear resistance was significantly improved. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Continuous atmospheric plasma oxidation (APO) was used to introduce oxygen functionalities to the surface of carbon fibres in an attempt to enhance interfacial adhesion between carbon fibres and polyamide-12 (PA-12). APO only affects the surface properties of the fibres while their bulk properties remained unchanged. Contact angle and ζ-potential measurements demonstrated that APO-treated fibres became significantly more hydrophilic due to the introduction of polar oxygen-containing groups on the fibre surface, which also resulted in an increase of surface energy on the carbon fibres. The interfacial shear strength of single carbon fibre/PA-12 model composites, determined by single fibre fragmentation tests, showed an increase from 40 to 83 MPa with up to 4 min of APO treatment time which confirms that the fibre/matrix interfacial adhesion was enhanced. This highlights that the incorporation of APO into composite manufacturing will allow tailoring of the fibre/matrix interface.  相似文献   

10.
尼龙66-盐与碳纤维复合-固态缩聚的研究   总被引:5,自引:0,他引:5  
本工作借助偏光显微镜,扫描电子显微镜和热分析方法(DSC,TGA)研究了尼龙66盐与碳纤维复合-固态缩聚反应历程及纤维-树脂之间的界面效应。发现对尼龙66盐的“原位固态缩聚”存有如碳纤维表面的成核结晶和催化效应之类的界面效应。讨论了碳纤维的界面效应对尼龙66基体的外延结晶和熔融行为及其热氧化稳定作用的影响。  相似文献   

11.
To improve the interfacial properties of carbon fibre-reinforced polymer composites, a surface treatment was used to cap cross-linked poly-itaconic acid onto carbon fibres via in-situ polymerization after itaconic acid grafting. The chemical composition of the modified carbon fiber (CF) surface was characterized by X-ray photoelectron spectral and Fourier-transform infrared spectroscopy. Scanning electron microscopy and atomic force microscopy images showed that the poly-itaconic acid protective sheath was uniformly capped onto the CF surface and that the surface roughness was obviously enhanced. Chemical bonds also played a key role in the interfacial enhancement. The results showed that the interfacial shear strength of the composites with poly-itaconic acid on the carbon fibres (72.2 MPa) was significantly increased by 89.5% compared with that of the composites with pristine CF (38.1 MPa). Moreover, the poly-itaconic acid sheath promoted a slight increase in mono-fibre tensile strength. In addition, the interfacial mechanisms were also discussed. Meanwhile, the mechanical property of the functionalized CF/epoxy resin composites was also significantly improved.  相似文献   

12.
The effects of surface treatment using potassium permanganate on ultra-high molecular weight polyethylene (UHMWPE) fibers reinforced natural rubber (NR) composites were investigated. The results showed the surface roughness and the oxygen-containing groups on the surface of the modified fibers were effectively increased. The NR matrix composites were prepared with as-received and modified UHMWPE fibers added 0–6 wt%. The treated fibers increased the modulus and tensile stress at a given elongation. The tear strength increased with increasing fiber mass fraction, attained maximum values at 4 wt%. The hardness of composites exhibited continuous increase with increasing the fiber content. The dynamic mechanical tests showed that the storage modulus and the tangent of the loss angle were decreased in the modified UHMWPE fibers/NR composites. Several micro-fibrillations between the treated fiber and NR matrix were observed, which meant the interfacial adhesion strength was improved.  相似文献   

13.
Modified graphite oxide (MGO)/Poly (propylene carbonate) (PPC) composites with excellent thermal and mechanical properties have been prepared via a facile solution intercalation method. An intercalated structure of MGO/PPC composites was confirmed by X-ray diffraction and scanning electron microscope. The thermal and mechanical properties of MGO/PPC composites were investigated by thermal gravimetric analysis, differential scanning calorimetric, dynamic mechanical analysis, and electronic tensile tester. Due to the nanometer-sized dispersion of layered graphite in PPC matrix and the strong interfacial interaction between MGO and PPC, the prepared MGO/PPC composites exhibit improved thermal and mechanical properties in comparison with pure PPC. Compared with pure PPC, the MGO/PPC composites show the highest thermal stability and the Tg is 13.8 °C higher than that of pure PPC, while the tensile strength (29.51 MPa) shows about 2 times higher than that of pure PPC when only 3.0 wt.% MGO is incorporated. These results indicate that this approach is an efficient method to improve the properties of PPC.  相似文献   

14.
Polyamide-6 (PA6)/carbon fiber (CF) composites were prepared by melt-extrusion via continuous fiber fed during extruding. The mechanical, thermal properties, and crystallization behavior of PA6/CF composites were investigated. It was found that the tensile modulus and strength of the composites were increased with the addition of CF, while their elongations at break were decreased. Scanning electron microscopy observation on the fracture surfaces showed the fine dispersion of CF and strong interfacial adhesion between fibers and matrix. Dynamic mechanical analysis results showed that the storage modulus of PA6/CF composites was improved with the addition of CF. Non-isothermal crystallization analysis showed that the CF plays a role as nucleating agent in PA6 matrix, and the α-form crystalline structure was favorable in the PA6/CF composites, as confirmed from the X-ray diffraction analysis. A trans-crystallization layer around CF could be observed by polarizing optical microscopy, which proved the nucleation effect of carbon fiber surface on the crystallization of PA6. The thermal stability of PA6/CF composites was also enhanced.  相似文献   

15.
《先进技术聚合物》2018,29(1):337-346
A biology‐inspired approach was utilized to functionalize hexagonal boron nitride (h‐BN), to enhance the interfacial interactions in acrylonitrile‐butadiene‐styrene copolymer/boron nitride (ABS/BN) composites. The poly (dopamine), poly (DOPA) layer, was formed on the surface of BN platelets via spontaneously oxidative self‐polymerization of DOPA in aqueous solution. The modified BN (named as mBN) coated with poly (DOPA) was mixed with ABS resin by melting. The strong interfacial interactions via π‐π stacking plus Van der Waals, both derived from by poly (DOPA), significantly promoted not only the homogeneous dispersion of h‐BN in the matrix, but also the effective interfacial stress transfer, leading to improve the impact strength of ABS/mBN even at slight mBN loadings. A high thermal conductivity of 0.501 W/(m·K) was obtained at 20 wt% mBN content, reaching 2.63 times of the value for pure ABS (0.176 W/(m·K)). Meanwhile, the ABS/mBN composites also exhibited an excellent electrical insulation property, which can be expected to be applied in the fields of thermal management and electrical enclosure.  相似文献   

16.
This paper addresses the role of Mo coating to modify the interface of SiC fiber reinforced Ti‐6Al‐4V composite (SiCf/Mo/Ti‐6Al‐4V). The formation of microstructure as well as the diffusion of elements in the interface of as‐prepared and heat‐treated SiCf/Mo/Ti‐6Al‐4V composites was investigated. The results show that the phases formed at the interfacial zone are: Mo coating∣TiC∣Mo + β‐Ti∣β‐Ti∣β‐Ti + α‐Tistrip, ordering from fiber to matrix. Mo coating can effectively hinder the diffusion of elements between the matrix and fiber to some extent, thus it can inhibit fiber/matrix interfacial reaction and protect the fiber from damage. It is believed that the β‐Ti layer formed around the interface can improve the formability of composites. Furthermore, it indicates that Mo coating exhibits excellent thermal stability bellow 700 °C according to the heat treatment of the composites at 700 °C for up to 200 h. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.

Bamboo-/kenaf-reinforced epoxy hybrid composites were prepared by hand layup method. The aim of this study is to look into the hybridization effect of bamboo and kenaf fibers at different ratios on thermal and thermo-oxidative (TOD) stabilities of hybrid composites. Three types of hybrid composites were fabricated with different mass ratios of bamboo fiber mat (B) to kenaf fiber mat (K), namely B/K 70:30, B/K 50:50 and B/K 70:30 while maintaining total fiber loading of 40% by mass. The thermal stability and thermo-oxidative (TOD) stability were analyzed by thermogravimetric analyzer. Differential scanning calorimetry (DSC) was used to investigate the oxidation onset temperature (OOT) of all the composites. The results reveal that bamboo composite shows higher thermal stability than kenaf composite in both inert and oxidative atmospheres. An increase in bamboo fibers mass ratio in the hybrid composite improved the thermal and TOD stability. The thermal and TOD stabilities of the hybrid composites follow the sequence of B/K 70: 30?>?B/K 50:50?>?B/K 30:70. Pure epoxy composite recorded the highest OOT at 197.50 °C. The results show that the addition of natural fiber in the epoxy matrix has significantly reduced the OOT compared to the pure epoxy. Data obtained from this work will help us to fabricate a sustainable and biodegradable component for automotive or building materials.

  相似文献   

18.
The effect of different ratios of carbon fiber (CF) reinforcing polyimide (PI) and surface treatment of CF on the microstructure and wear resistance of surface layers was studied. The increase of CF content led to a gradual increase in the Interlaminar shear strength (ILSS) values, and the maximum ILSS value arises when the CF content is 15 vol%, with an improvement of 13.45% compared to virgin CF composites. The increased interfacial adhesion could be contributed mainly to the presence of branched PI at the interface region. SEM of the worn surface confirms that the plasma treatment efficiently improves the interfacial adhesion of CF/PI composite. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

19.
Mechanical properties of carbon fiber (CF) and carbon nanotube (CNT)‐filled thermoplastic high‐density polyethylene (HDPE) composites were studied with particular interest on the effects of filler content and fiber surface treatment by coupling agent. Surface‐treated CF‐filled HDPE composites increased their tensile strength and impact strength, which is further increased with the addition of CNT. SEM showed that CNT‐coating‐treated CF‐HDPE composites show better dispersion of the filler into the matrix, which results in better interfacial adhesion between the filler and the matrix. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Continuous carbon fiber reinforced poly-ether-ether-ketone (CCF/PEEK) composites have attracted significant interests in mission-critical applications for their exceptional mechanical properties and high thermal resistance. In this study, we additively manufactured CCF/PEEK laminates by the Laser-assisted Laminated Object Manufacturing technique, which was recently reported by the authors. The effects of laser power and consolidation speed on the flexural strength of the CCF/PEEK composites were studied to obtain the optimal process parameters. Hot press postprocessing was performed to further improve the mechanical properties of the composites. Various fiber alignment laminates were prepared, and the flexural and tensile properties were characterized. The hot press postprocessing 3D printed unidirectional CCF/PEEK composites exhibited ultrahigh flexural modulus and strength of 125.7 GPa and 1901.1 MPa, respectively. In addition, the tensile modulus and strength of the composites reached 133.1 GPa and 1513.8 MPa. The results showed that the fabricated CCF/PEEK exhibited superior mechanical performance compare to fused filament fabrication (FFF) printed carbon fiber reinforced thermoplastics (CFRTP).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号