首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The mechanical strength and modulus of chopped carbon fiber (CF)‐reinforced polybenzoxazine composites were investigated by changing the length of CFs. Tensile, compressive, and flexural properties were investigated. The void content was found to be higher for the short fiber composites. With increase in fiber length, tensile strength increased and optimized at around 17 mm fiber length whereas compressive strength exhibited a continuous diminution. The flexural strength too increased with fiber length and optimized at around 17 mm fiber length. The increase in strength of composites with fiber length is attributed to the enhancement in effective contact area of fibers with the matrix. The experimental results showed that there was about 350% increase in flexural strength and 470% increase in tensile strength of the composites with respect to the neat polybenzoxazine, while, compressive properties were adversely affected. The composites exhibited an optimum increase of about 800% in flexural modulus and 200% in tensile modulus. Enhancing the fiber length, leads to fiber entanglement in the composites, resulted in increased plastic deformation at higher strain. Multiple branch matrix shear, debonded fibers and voids were the failures visualized in the microscopic analyses. Defibrillation has been exhibited by all composites irrespective of fiber length. Fiber debonding and breaking were associated with short fibers whereas clustering and defibrillation were the major failure modes in long fiber composites. Increasing fiber loading improved the tensile and flexural properties until 50–60 wt% of fiber whereas the compressive property consistently decreased on fiber loading. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
The cellulose fiber was extracted from the abandoned crop sugarcane bagasse (SCB) by means of chemical treatment methods. Poly(lactic acid) (PLA) bio‐based composites with SCB were prepared through fused deposition modeling (FDM) 3D‐printing technology, and the morphologies, mechanical properties, crystallization properties, and thermal stability of 3D‐printed composites were investigated. Compared with the neat PLA, the incorporation of SCB into PLA reduces the tensile strength and flexural strength of 3D‐printed samples but increases the flexural modulus. The difference in tensile performance and bending performance is that the tensile strength of 3D‐printed samples is best when the SCB content is 6 wt%, while the flexural modulus continuously decreases as the SCB content increases. Furthermore, the effects of various printing methods on the tensile performance of 3D‐printed samples were explored via modifying G‐code of 3D models. The results indicate that the optimum SCB fiber content is identical for all printing methods except method “vertical.” Due to the fibers and molecular chains are oriented to varying degrees with altering raster angle in 3D‐printed samples, the fully oriented sample printed by method “parallel” has a better tensile strength. Besides, SCB exhibits enough high thermal decomposition temperature to meet requirements for melt extrusion processing of PLA composites, and SCB fiber is capable of promoting the crystallization of PLA.  相似文献   

3.
This paper is concerned with the effects of the plasma surface treatment and the addition of CNT on the mechanical properties of carbon fiber/polytetrafluoroethylene (PTFE) composite. The tensile and flexural strength of composites containing CNT and plasma‐treated carbon fibers improved. The flexural strength first decreases with respect to the CF content. The flexural strength increases to 179 MPa for the plasma‐treated composite as compared with 167 MPa for the neat carbon fiber composites. The overall improvement is thus nearly 8%.  相似文献   

4.
This research works with the optimal design of marble dust-filled polymer composites using a multi-criteria decision-making (MCDM) technique. Polylactic acid (PLA) and recycled polyethylene terephthalate (rPET)-based composites containing 0, 5, 10, and 20 wt% of marble dust were developed and evaluated for various physicomechanical and wear properties. The results showed that the incorporation of marble dust improved the modulus and hardness of both PLA and rPET. Moreover, a marginal improvement in flexural strength was noted while the tensile and impact strength of the matrices were deteriorating due to marble dust addition. The outcomes of wear analysis demonstrated an improvement in wear resistance up until 10 wt% filler reinforcement, after which the incidence of dust particles peeling off from the matrix was observed, thereby reducing its efficiency. The best tensile modulus of 3.23 GPa, flexural modulus of 4.39 GPa, and hardness of 83.95 Shore D were obtained for 20 wt% marble dust-filled PLA composites. The lowest density of 1.24 g/cc and the highest tensile strength of 57.94 MPa were recorded for neat PLA, while the highest impact strength of 30.94 kJ/m2 was recorded for neat rPET. The lowest wear of 0.01 g was obtained for the rPET containing 5 wt% marble dust content. The experimental results revealed that for the examined criteria, the order of composite preference is not the same. Therefore, the optimal composite was identified by adopting a preference selection index-based MCDM technique. The findings demonstrated that the 10 wt% marble dust-filled PLA composite appears to be the best solution with favorable physical, mechanical, and wear properties.  相似文献   

5.
The hybrid reinforcement effect of surface‐treated UHMWPE fiber and SiO2 on the mechanical properties of PMMA matrix composites was investigated. When UHMWPE fiber is introduced, the tensile strength of UHMWPE fiber‐reinforced composites sharply increases. The flexural modulus was enhanced with an increase in filler loading. Flexural modulus of the treated UHMWPE/SiO2/PMMA composites was higher than that of the UHMWPE/PMMA and UHMWPE/SiO2/PMMA composites. The outcome of the better interfacial bonding between the filler and the matrix is reflected in the improvement of the mechanical properties of the treated UHMWPE/SiO2/PMMA composites. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

6.
In this work, the investigation of the physical, mechanical, and morphological properties of the rice husk flour/polypropylene composites was performed utilizing various filler loadings and coupling agent. Five levels of filler loading (35, 40, 45, 50, and 55 wt%) were designed. In addition, to help the interaction between fiber and polypropylene matrix, struktol coupling agent was added to the composites. All of tensile strength, Young's modulus, flexural strength, flexural modulus, and impact strength properties of the composites were carried out. Moreover, the 50 wt% filler-loaded composites had optimum tensile strength, flexural strength, and flexural modulus, whereas the 35 wt% of filler loading case was the best regarding Young's modulus, flexural strength, flexural modulus, and impact strength. Furthermore, the scanning electron microscope results demonstrate that as filler loading increases, more voids and fiber pullout occur.  相似文献   

7.
The effects of surface treatment using potassium permanganate on ultra-high molecular weight polyethylene (UHMWPE) fibers reinforced natural rubber (NR) composites were investigated. The results showed the surface roughness and the oxygen-containing groups on the surface of the modified fibers were effectively increased. The NR matrix composites were prepared with as-received and modified UHMWPE fibers added 0–6 wt%. The treated fibers increased the modulus and tensile stress at a given elongation. The tear strength increased with increasing fiber mass fraction, attained maximum values at 4 wt%. The hardness of composites exhibited continuous increase with increasing the fiber content. The dynamic mechanical tests showed that the storage modulus and the tangent of the loss angle were decreased in the modified UHMWPE fibers/NR composites. Several micro-fibrillations between the treated fiber and NR matrix were observed, which meant the interfacial adhesion strength was improved.  相似文献   

8.
Epoxy resin composite patches reinforced by carbon fiber were prepared through ultraviolet (UV)–curing method, and the damaged aluminum alloy plates are rapidly repaired by means of adhesively bonding method. Mechanical properties of the composite patches and damaged aluminum alloy plates before and after repair were studied by experiment and numerical simulation. Results indicated that the tensile properties of carbon fiber/epoxy resin composite patches presented the tendency of first increase and then decrease with the increase of layer numbers of reinforced fiber. The composite patches with two layers fiber showed the best tensile properties, and the tensile strength and modulus reached 1.13 GPa and 27.79 GPa, respectively. However, the bending strength of composite patches decreased with the increase of layer numbers. Results of performance evaluation on the mechanical properties of damaged aluminum alloy plates repaired by the two layers carbon fiber/epoxy resin composite patches showed that the repair efficiency of tensile and bending properties of the repaired aluminum alloys reached more than 83% and 160%, respectively, compared with the undamaged aluminum alloys. Besides, results of numerical simulation showed that the stress intensity factor (SIF) of the crack tip on repaired aluminum alloy plates decreased significantly in comparison with the unrepaired aluminum alloy plates, which further revealing the reinforced mechanism of composite patches on the bending properties of repaired aluminum alloy plates.  相似文献   

9.
Natural fiber-reinforced nanocomposites were prepared by incorporating wild cane grass fiber and organically modified montmorillonite (MMT) nanoclay into polyester resin. The composites were formulated up to a maximum volume of fiber of approximately 40% and their mechanical properties were investigated. The mean tensile strength and tensile modulus of nanoclay-filled wild cane grass fiber composites are 6.3% and 18.3% greater than those of wild cane grass fiber composites, respectively, without addition of nanoclay at maximum percentage volume of fiber. The mean flexural strength of nanocomposites at maximum percentage volume of fiber was increased to a maximum of 221 Mpa and flexural modulus to 4.2 Gpa. The mean impact strength of nanoclay-filled wild cane grass fiber composites was increased to 376.7 J/m at maximum percentage volume of fiber. The weight loss of nanoclay-filled wild cane grass fiber/polyester composites was 30% and 22% less than that of composites without nanoclay at maximum percentage volume of fiber. The results indicated that the use of nanoclay showed significant improvement in all the mechanical properties of wild cane grass fiber-reinforced composites.  相似文献   

10.
Halogen free nitrogen-phosphorous flame retardants (PMOP) were prepared through reaction of melamine and polyphosphoric acid in the presence of flame retardant modifier CM with silicotungistic acid as a catalyst in aqueous solution. FT-IR, XRD, DSC and TGA techniques were used to characterize the reaction product PMOP. The obtained flame retardants were then used to prepare flame retardant (FR) polyamide 6 (PA6) composite reinforced with glass fiber (GF) and the factors affecting the flame retardancy of the material were also investigated. The FR GF reinforced PA6 composite and the obtained charred layers were analyzed by utilizing TGA, SEM, FT-IR and XRD. The properties of the charred layer were connected with the flame retardancy of the corresponding material to reveal the flame retarding mechanism of FR GF reinforced PA6 composite. The experimental results show that PMOP flame retardant consists of melamine polyphosphate, melamine phosphate and possible melamine pyrophosphate. The presence of CM was found to improve the flame retardancy of FR GF reinforced PA6 composite. It was experimentally found that PMOP flame retardant, which is comparatively stable in the range of processing temperatures of PA6, is particularly suitable for flame retarding PA6 reinforced with GF. With increasing the flame retardant content, the flame retardancy of the FR reinforced material is not improved so obviously. However, the increase in the GF content greatly improves the flame retardancy of the composite, because GF greatly increases the char yield of material, decreases the maximal thermal decomposition rate, promotes the formation of charred layer with (PNO)x structure and greatly increases the strength of the charred layer. The prepared FR GF reinforced PA6 composites have good comprehensive properties with flame retardancy 1.6 mm UL 94 V-0 level, tensile strength 76.8 MPa, Young's modulus 11.7 GPa, Izod notched impact strength 4.5 kJ/m2, flexural strength 98.0 MPa and flexural modulus 7.2 GPa, showing a better application prospect.  相似文献   

11.
Rossells fiber reinforced polypropylene composites were prepared by melt mixing. The fiber content was 20 wt%. Octadecyltrimethoxysilane (OTMS) and maleic anhydride grafted polypropylene (MAPP) were used to improve the adhesion between poly(propylene) (PP) and the fiber. The mechanical, rheological, and morphological properties, and heat distortion temperature (HDT) of the composites were investigated. Tensile strength, impact strength, flexural strength and HDT of MAPP modified PP composites increased with an increase in MAPP content. However, no remarkable effect of MAPP content on the Young's modulus of the composites was found. OTMS resulted in small decreases of tensile strength and Young's modulus, and increase in impact strength. Scanning electron micrographs revealed that MAPP enhanced surface adhesion between the fiber surface and PP matrix.  相似文献   

12.
Kapok/cotton fabric has been used as reinforcement for conventional polypropylene and maleic anhydride grafted polypropylene resins. Treating the reinforcement with acetic anhydride and sodium hydroxide has modified the fabric (fibres). Thermal and mechanical properties of the composites were investigated. Results show that fibre modification gives a significant improvement to the thermal properties of the plant fibres, whereas tests on the mechanical properties of the composites showed poor tensile strength. Mercerisation and weathering were found to impart toughness to the materials, with acetylation showing slightly less rigidity compared to other treatments on either the fibre or composites. The modified polypropylene improved the tensile modulus and had the least toughness of the kapok/cotton reinforced composites. MAiPP reinforced with the plant fibres gave better flexural strength and the same flexural modulus at lower fibre content compared with glass fibre reinforced MAiPP.  相似文献   

13.
30 wt% aligned untreated long hemp fibre/PLA (AUL) and aligned alkali treated long hemp fibre/PLA (AAL) composites were produced by film stacking and subjected to accelerated ageing. Accelerated ageing was carried out using UV irradiation and water spray at 50 °C for four different time intervals (250, 500, 750 and 1000 h). After accelerated ageing, tensile strength (TS), flexural strength, Young's modulus (YM), flexural modulus and mode I fracture toughness (KIc) were found to decrease and impact strength (IS) was found to increase for both AUL and AAL composites. AUL composites had greatest overall reduction in mechanical properties than that for AAL composites upon exposure to accelerated ageing environment. FTIR analysis and crystallinity contents of the accelerated aged composites support the results of the deterioration of mechanical properties upon exposure to accelerated ageing environment.  相似文献   

14.
This paper presents a method for the non-destructive inspection and quantitative comparison of low-velocity impact damage in thermoplastic and thermoset composites. X-ray microscope (XRM) computed tomography is used to analyse the three-dimensional internal damage in carbon fibre/poly-ether-ether-ketone (AS4/PEEK) and carbon fibre/epoxy (CCF300/Epoxy) laminates. With the materials and testing conditions used, it was shown that thermoplastic composites have better interlaminar and intralaminar properties, and the following quantitative conclusions were drawn. Under the same impact energy, the maximum contact force of AS4/PEEK laminate was approximately twice that of CCF300/Epoxy laminate. Dissection of the reconstructed XRM volume along a characteristic slicing surface showed that AS4/PEEK had less internal damage than CCF300/epoxy. When the impact energy was 15 J, the XRM results showed that the sum of delamination areas between each ply in AS4/PEEK was only 9% of that in CCF300/Epoxy, whereas the ultrasonic C-scan results showed that the total delamination area of AS4/PEEK was 54.78% of that of CCF300/Epoxy.  相似文献   

15.
We prepared thermoplastic composite panels using solution impregnation of continuous lyocell (regenerated cellulose) fibers with a cellulose mixed-ester (cellulose acetate butyrate) matrix. We examined both fiber-matrix adhesion and melt consolidation in an effort to produce uniform panels having low void content and high mechanical strength. We characterized the effect of surface modification by acetylation on interfacial adhesion between the cellulose fiber and cellulose ester. Whereas wood fiber acetylation had previously been observed to result in significant strength gains in (discontinuous) wood fiber- reinforced composites (with the same matrix material), we did not observe a similar increase in strength in the continuous lyocell cellulose fiber system. This suggests that interfacial stress transfer is not a limitation in this system. This was confirmed by microscopic examination of the fracture surfaces, which indicated that fiber-matrix adhesion was considerable in the absence of fiber surface modification. We then systematically varied melt consolidation conditions (temperature, pressure and time) in an attempt to define optimum consolidation parameters by using design of experiments (DOE) methodology. We measured both interlaminar shear strength (ILSS) and composite void volume. We found that a minimal void content (ca. 2.83 vol. %) occurred at moderate temperatures (200°C), low consolidation pressures (81.4kPa) and long press times (13min). This was also where we maximized the interlaminar shear strength (ILSS) at a value of 16.3MPa. This agrees with the regression model predictions. We observed the highest tensile properties at the ILSS and void-volume optimal-consolidation condition: a tensile modulus of 22GPa and tensile strength of 246MPa were obtained.  相似文献   

16.
The aim of the last part of this general study is to analyze the influence of the interfacial properties and, more precisely, the adhesion energy, between carbon fibers and PEEK on the final performance of unidirectional composites. A set of mechanical properties, i.e. interlaminar shear strength, longitudinal tensile and compressive and transverse tensile properties, of different unidirectional laminates with the same content (60% by volume) of carbon fibers is determined. It is first shown that the interlaminar shear strength is constant, whatever the type of materials. Therefore, this test is not appropriate to characterize the strength of the fiber–matrix interface in PEEK-based composites. On the contrary, in agreement with previous work on other systems, it appears that the ultimate properties (longitudinal tensile and compressive as well as transverse tensile strengths and strains) of the laminates increase with the interfacial adhesion energy, whereas the stiffness of these composites remains unaffected in all cases.  相似文献   

17.
Glass-fiber reinforced epoxy composites were fabricated from the matrix resin liquid diglycidyl ether of bisphenol-C (DGEBC) using various amines as curing agents with and without fortifier (20 phr). The epoxy laminates were evaluated for their mechanical properties, such as flexural strength, interlaminar shear strength (ILSS), tensile strength and shore-D hardness. Dielectric properties, such as the dielectric constant, tan δ, dielectric loss and the resistivity of the laminated samples, were measured. The effect of the chemical reagents on the mechanical properties (i.e. flexural strength, lLSS) was also studied.  相似文献   

18.
BaTiO3/bismaleimide/epoxy/glass fiber reinforced composites were prepared using E-glass fiber (E-GF) and silane coated E-glass fiber (SC-EGF) separately as reinforcement. BaTiO3 nanoparticles were prepared by hydrothermal method. Results show that the addition of BaTiO3 nanoparticles has significant effects on the mechanical and dielectric properties of the composite. Both E-GF and SC-EGF reinforced BaTiO3/bismaleimide/epoxy composites with 2 wt percentages of BaTiO3 nanoparticles showed improved tensile strength, flexural strength and dielectric constant and those with 3% showed high dielectric strength indicating this composition is more adaptable for high voltage insulating applications. Dielectric constants and dielectric loss of the fabricated nanocomposites have been obtained at higher frequencies (in GHz) by using Vector Network Analyser at room temperature and was found to be highest for the BMI-Epoxy nanocomposite with 1% weight nanofiller.  相似文献   

19.
A new method to obtain composites of phenolic resin reinforced with microfibrillated cellulose with a wide fiber content was established and the mechanical properties were evaluated by tensile test. A linear increase in Young’s modulus was observed at fiber contents up to 40 wt%, with a stabilizing tendency for higher fiber percentages. These results were ratified by measurements of the coefficient of thermal expansion (CTE) relative to fiber content, which indicated a strong thermal expansion restriction rate below 60 wt% fiber content, indicating the effective reinforcement attained by the cellulose microfibrils. The low CTE achieved of 10 ppm/K is one of the important properties of cellulose composites.  相似文献   

20.
Ultra-high molecular weight polyethylene (UHMWPE) fibre has great potential for strengthening structures against impact or blast loads. A quantitative characterization of the mechanical properties of UHMWPE fibres at varying strain rates is necessary to achieve reliable structural design. Quasi-static and high-speed tensile tests were performed to investigate the unidirectional tensile properties of UHMWPE fibre laminates over a wide range of strain rates from 0.0013 to 163.78 s−1. Quasi-static tensile tests of UHMWPE fibre laminates were conducted at thicknesses ranging from 1.76 mm to 5.19 mm. Weibull analysis was conducted to investigate the scatter of the test data. The failure mechanism and modes of the UHMWPE fibre laminates observed during the test are discussed. The test results indicate that the mechanical properties of the UHMWPE fibre laminate are not sensitive to thickness, whereas the strength and the modulus of elasticity increase with strain rate. It is concluded that the distinct failure modes at low and high strain rates partially contribute to the tensile strength of the UHMWPE fibre laminates. A series of empirical formulae for the dynamic increase factor (DIF) of the material strength and modulus of elasticity are also derived for better representation of the effect of strain rate on the mechanical properties of UHMWPE fibre laminates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号