首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 154 毫秒
1.
Researches on two-phase flow and pool boiling heat transfer in microgravity, which included ground-based tests, flight experiments, and theoretical analyses, were conducted in the National Microgravity Laboratory/CAS. A semi-theoretical Weber number model was proposed to predict the slug-to-annular flow transition of two-phase gas–liquid flows in microgravity, while the influence of the initial bubble size on the bubble-to-slug flow transition was investigated numerically using the Monte Carlo method. Two-phase flow pattern maps in microgravity were obtained in the experiments both aboard the Russian space station Mir and aboard IL-76 reduced gravity airplane. Mini-scale modeling was also used to simulate the behavior of microgravity two-phase flow on the ground. Pressure drops of two-phase flow in microgravity were also measured experimentally and correlated successfully based on its characteristics. Two space experiments on pool boiling phenomena in microgravity were performed aboard the Chinese recoverable satellites. Steady pool boiling of R113 on a thin wire with a temperature-controlled heating method was studied aboard RS-22, while quasi-steady pool boiling of FC-72 on a plate was studied aboard SJ-8. Ground-based experiments were also performed both in normal gravity and in short-term microgravity in the drop tower Beijing. Only slight enhancement of heat transfer was observed in the wire case, while enhancement in low heat flux and deterioration in high heat flux were observed in the plate case. Lateral motions of vapor bubbles were observed before their departure in microgravity. The relationship between bubble behavior and heat transfer on plate was analyzed. A semi-theoretical model was also proposed for predicting the bubble departure diameter during pool boiling on wires. The results obtained here are intended to become a powerful aid for further investigation in the present discipline and development of two-phase systems for space applications.  相似文献   

2.
微重力气液两相流动与池沸腾传热   总被引:1,自引:0,他引:1  
赵建福  彭超  李晶 《力学进展》2010,40(4):460-470
综述了近年来中国科学院微重力重点实验室(国家微重力实验室)完成的一系列微重力气液两相流动与池沸腾传热方面的地基实验、飞行实验和理论研究等方面获得的主要成果.在微重力气液两相流动方面,提出了半理论Weber数模型用于预测微重力条件下气液两相弹-环状流转换,并采用Monte Carlo方法,针对气泡初始尺寸对泡-弹状流转换的影响进行数值研究.通过俄罗斯"和平号"空间站与IL-76失重飞机实验,获得了微重力下的气液两相流型图,与此同时在地面利用小尺度毛细管模型模拟了微重力气液两相流动特征.实验测量了微重力气液两相流压降,并基于微重力流动特性建立了一个泡状流压降关联模型.在微重力池沸腾传热方面,利用我国返回式卫星完成了两次空间实验,其中,第22颗返回式卫星搭载铂丝表面R113池沸腾实验采用控制温度的稳态加热方式,而实践8号育种卫星搭载平面FC-72池沸腾实验则采用控制加热电压的准稳态加热方式.同时,还进行了地面常重力和落塔短时微重力条件下的对比实验研究.观察到丝状加热表面微重力时轻微的传热强化现象,而平板加热表面微重力核态池沸腾低热流时传热强化、高热流时传热恶化.微重力实验中观察到气泡脱落前存在横向运动现象,据此分析了气泡行为与传热之间关系,并提出了一个预测丝状加热表面气泡脱落直径的半理论模型.旨在对相关领域的进一步发展和空间两相流系统的应用提供数据及理论支持.  相似文献   

3.
For the main purpose of database construction in order to develop the interfacial area transport equation, axial developments of local void fraction, interfacial area concentration, bubble Sauter mean diameter, interfacial velocity, and bubble number density were measured in boiling water bubbly flows in a vertical-upward internally heated annulus using a double-sensor conductivity probe. The annulus channel consisted of an inner rod with a diameter of 19.1 mm and an outer round tube with an inner diameter of 38.1 mm, and the hydraulic equivalent diameter was 19.1 mm. A total of 11 data sets were acquired consisting of four inlet liquid velocities, 0.500, 0.664, 0.987 and 1.22 m/s, two heat fluxes, 100 and 150 kW/m2, and two inlet liquid temperatures, 95.0 and 98.0°C. The axial developments of the flow parameters were discussed based on the measured data in detail. In addition to the database construction, the measured data validated recently proposed constitutive equations for the distribution parameter, drift velocity, and bubble Sauter mean diameter, which will improve the accuracy of the drift-flux model in subcooled bubbly flow.  相似文献   

4.
Both visual experiments and numerical analyses were conducted to investigate the interaction between bubble jet flows during pool boiling of subcooled water on horizontal thin wires. The bubble jet flows nearby attracted each other, and they can combine into one jet flow under strong interaction. As the adjacent bubble departs, the bubble jet flow would experience an unsteady evolution process with the jet flow interaction weakening. Since the unsymmetrical thermocapillary force at the bubble interface was induced by the adjacent bubble as a cold source, the bubble jet flow would trend to the adjacent bubble, and the mechanism based on thermocapillary force and cold source can explain the bubble jet flow interaction very well. The steady bubble jet flow interaction phenomena were further simulated by laminar model, and the calculated jet flow interaction phenomena were in a good agreement with the experimental results.  相似文献   

5.
Experiments show that in low-and high-velocity flows the boiling process is fundamentally different: in the former, the fluid boils on the walls, and in the latter in the volume. In high-velocity flows, the boiling intensity is orders of magnitude greater. In modeling fast and slow flows, the number of bubbles, which is a free parameter of the model and must be specified, differs by orders of magnitude. When high-speed flows of different kinds are modeled (vessel depressurization, nozzle flows) the number of bubbles specified also differs by orders of magnitude. In this study, we formulate the hypothesis that in both kinds of flows the process of boiling starts similarly, namely, on the walls. However, in high-speed flows the number of bubbles increases by orders of magnitude due to bubble fragmentation. As a result of intense fragmentation, the system “forgets” the initial number of bubbles and the process becomes volume boiling. This approach makes it possible to construct a universal model of boiling. To test this hypothesis, we constructed a mathematical model which takes into account the possibility of bubble fragmentation due to the instability developing under the action of centrifugal accelerations of the bubble surface. This model was used to calculate the process of depressurization of a high-pressure vessel. The calculations demonstrated that, for any initial number of bubbles, 1 ms after depressurization the bubble number attains the same level. Bubble fragmentation takes place in “self-sustained detonation waves”. The stationary structure of detonation waves in a boiling fluid is investigated. A scheme of the wave structure according to which the wave consists of a shock wave and a relaxation zone is proposed. Calculations of a boiling-fluid flow through a Laval nozzle reveal the periodic appearance of detonation waves. Accordingly, nozzle flows should be accompanied by significant oscillations of the parameters.  相似文献   

6.
The convective boiling characteristics of dilute dispersions of CuO nanoparticles in water/ethylene glycol as a base fluid were studied at different operating conditions of (heat fluxes up to 174 kW m?2, mass fluxes range of 353–1,059 kg m?2 s?1 and sub-cooling level of 343, 353 and 363 K) inside the annular duct. The convective boiling heat transfer coefficients of nanofluids in different concentrations (vol%) of nanoparticles (0.5, 1, and 1.5) were also experimentally quantified. Results demonstrated the significant augmentation of heat transfer coefficient inside the region with forced convection dominant mechanism and deterioration of heat transfer coefficient in region with nucleate boiling dominant heat transfer mechanism. Due to the scale formation around the heating section, fouling resistance was also experimentally measured. Experimental data showed that with increasing the heat and mass fluxes, the heat transfer coefficient and fouling resistance dramatically increase and rate of bubble formation clearly increases. Obtained results were then compared to some well-known correlations. Results of these comparisons demonstrated that experimental results represent the good agreement with those of obtained by the correlations. Consequently, Chen correlation is recommended for estimating the convective flow boiling heat transfer coefficient of dilute CuO-water/ethylene glycol based nanofluids.  相似文献   

7.
采用高频电控热激发汽泡的方式构造微通道人工泡状流,可以有效抑制微通道沸腾流动的不稳定性和强化传热。本文基于Lattice Boltzmann大密度比多相流复合模型,数值研究了通道内人工泡状流的流动和传热,通过比较分析不同发泡频率的泡状流,量化分析了汽泡运动和增长对微通道流动与传热的相互影响。一方面着重分析了汽泡运动对微通道运动边界层以及汽泡相变增长对热边界层的影响,另一方面也研究了边界层对汽泡动力行为的影响,所得结论对研究抑制微通道沸腾流动不稳定性和强化传热有参考意义。  相似文献   

8.
The axial development of the void fraction profile, interfacial area concentration and Sauter mean bubble diameter of adiabatic nitrogen-water bubbly flows in a 9 mm-diameter pipe were measured using stereo image processing under normal and microgravity conditions. The flow measurements were performed at four axial locations (axial distance from the inlet, z normalized by the pipe diameter, D, z/= 5, 20, 40 and 60) and with various flows: superficial gas velocity of 0.00840-0.0298 m/s, and superficial liquid velocity of 0.138-0.914 m/s. The effect of gravity on radial distribution of bubbles and the axial development of two-phase flow parameters is discussed in detail based on the obtained database and visual observation. Following Serizawa-Kataoka’s phase distribution pattern criteria under normal gravity conditions, the phase distribution pattern map was developed. Similar to normal gravity two-phase flows, wall, core and intermediate void peak patterns are observed under microgravity conditions but a transition void distribution pattern is not observed in the current experimental conditions. The data obtained in the current experiment are expected to contribute to the benchmarking of CFD simulation of phase distribution pattern and interfacial area concentration in forced convective pipe flow under microgravity conditions.  相似文献   

9.
In this paper, the saturated pool boiling is investigated using lattice Boltzmann method. The written FORTRAN code is validated in two aspects: For flow, the thermodynamic consistency test and Laplace law are applied and for heat transfer, the space- and time- averaged Nusselt number is compared with Berenson analytical solution in film boiling regime. In addition, the results of bubble generation and departure are compared with some well-known analytical solutions to show the accuracy of the code. It is confirmed that bubble departure diameter and the departure frequency are related to the gravity acceleration with powers of ? 0.505 and 0.709, respectively, which is in a very good agreement with the existing analytical expressions. The present model has the ability to tune different surface tensions independent of liquid/vapor density ratio, which was unreachable using other existing numerical models of boiling. Thus, the sole effects of surface tension on boiling can also be taken into consideration using the present model. It is also shown that the departure diameter is related to the surface tension with a power of 0.485, which is in good agreement with the analytical expressions. Temperature contours are shown together with flow lines to have a better viewpoint for studying the bubble’s behavior. An intensive temperature gradient is observed in the necking area at the departure time. All the four boiling regimes in the boiling curve are simulated under constant temperature boundary condition. The Prandtl number effects on vapor bubble dynamics in the film boiling regime are investigated using the improved Shan and Chen model for the first time. Results revealed that bubbles are more resistant to depart from the vapor blanket with increasing the Prandtl number.  相似文献   

10.
Studies on the numerical simulation of high-Reynolds-number flows encounter difficulties due to the wide range of characteristic length and time scales existing in the flow field. These are often much smaller than the computational grid size. A new approach based on a ‘model-free ’ local average direct numerical simulation is presented which incorporates a strategy to filter the non-resolvable scales by means of an integration over the domain and to recover the contribution of the subgrid scales by using an integral formulation developed for them. The resulting weak formulation allows us to define a numerical flux that, thanks to the filtering operation, is highly accurate. Several computation test-cases concerning theoretical accuracy and the Navier–Stokes equations at high Reynolds number are carried out without using any turbulence model. The obtained accuracy for all computations confirms that this approach can be considered a valid contribution in the field of direct numerical simulation.  相似文献   

11.
An Eulerian–Lagrangian approach is developed for the simulation of turbulent bubbly flows in complex systems. The liquid phase is treated as a continuum and the Navier–Stokes equations are solved in an unstructured grid, finite volume framework for turbulent flows. The dynamics of the disperse phase is modeled in a Lagrangian frame and includes models for the motion of each individual bubble, bubble size variations due to the local pressure changes, and interactions among the bubbles and with boundaries. The bubble growth/collapse is modeled by the Rayleigh–Plesset (RP) equation. Three modeling approaches are considered: (a) one‐way coupling, where the influence of the bubble on the fluid flow is neglected, (b) two‐way coupling, where the momentum‐exchange between the fluid and the bubbles is modeled, and (c) volumetric coupling, where the volumetric displacement of the fluid by the bubble motion and the momentum‐exchange are modeled. A novel adaptive time‐stepping scheme based on stability‐analysis of the non‐linear bubble dynamics equations is developed. The numerical approach is verified for various single bubble test cases to show second‐order accuracy. Interactions of multiple bubbles with vortical flows are simulated to study the effectiveness of the volumetric coupling approach in predicting the flow features observed experimentally. Finally, the numerical approach is used to perform a large‐eddy simulation in two configurations: (i) flow over a cavity to predict small‐scale cavitation and inception and (ii) a rising dense bubble plume in a stationary water column. The results show good predictive capability of the numerical algorithm in capturing complex flow features. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
田北晨  李林敏  陈杰  黄彪  曹军伟 《力学学报》2022,54(6):1557-1571
空化的多尺度效应是一种涉及连续介质尺度、微尺度空化泡以及不同尺度间相互转化的复杂水动力学现象, 跨尺度模型的构建是解析该多尺度现象的关键. 本文基于欧拉-拉格朗日联合算法, 通过界面捕捉法求解欧拉体系下大尺度空穴演化, 通过拉格朗日体系下离散空泡模型求解亚网格尺度离散空泡的运动及生长溃灭. 同时, 通过判断空泡与网格尺度间的关系判定不同尺度空化泡的求解模型. 基于建立的多尺度算法对绕NACA66水翼空化流动进行模拟, 将数值结果与实验进行对比, 验证了数值计算方法的准确性. 研究结果表明, 离散空泡数量与空化发展阶段密切相关, 在附着型片状空穴生长阶段, 离散空泡数量波动较小, 离散空泡主要分布在气液交界面位置; 在回射流发展阶段, 离散空泡逐渐增加并分布在回射流扰动区; 在云状空穴溃灭阶段, 离散空泡数量增多且主要分布在气液掺混剧烈的空化云团溃灭区. 在各空化发展阶段, 离散空泡直径概率密度函数均符合伽玛分布. 空化湍流流场特性对拉格朗日空泡空间分布具有重要影响, 离散空泡主要分布在强湍脉动区、旋涡及回射流发展区域.   相似文献   

13.
An improved lattice Boltzmann (LB) model with a new scheme for the interparticle interaction force term is proposed in this paper. Based on the improved LB model, the equation-free method is implemented for simulating liquid–vapour phase change and multiphase flows. The details of phase separation are presented by numerical simulation results in terms of coexistence curves and spurious currents. Compared with existing models, the proposed model can give more accurate results in a wider temperature range with the spurious currents reduced and less time consumed. Characteristics of phase separation can be quickly and accurately reflected by the proposed method. Then, the contact angle of the solid surface is numerically investigated based on the proposed model. The proposed model is valid for steady flow with near zero velocity; unsteady cases will be investigated in further studies. This work will be helpful for our long-term aim of multi-scale modelling of convective boiling.  相似文献   

14.
Two-fluid model used for free surface flows with large characteristic scales is improved; the smeared interface is sharpened with conservative level set method and the surface tension force with wetting angle is implemented. Surface tension force is split between two phases with several models. Detailed analysis showed the splitting of surface tension force with volume averaging as the most appropriate. The improved two-fluid model with interface sharpening and implemented surface tension is validated on several test cases. The pressure jump over a droplet interface test case showed that the pressure jump in simulation converges with grid refinement to the analytical one. The parasitic currents in simulation are one order of magnitude larger than in simulation with volume of fluid model. In the oscillating droplet test case the time period of oscillating droplet with initially ellipsoid or square shape is similar to the analytical time period. In the rising bubble test case, the rising bubble position, terminal velocity, and circularity are similar to the one observed in simulations with level set model. The wetting angle is implemented in the two-fluid model with interface sharpening and surface tension force. Model is tested in the simulation of droplet in contact with wall with different wetting angles.  相似文献   

15.
Heat transfer phenomena with bubble condensation in subcooled liquids and during subcooled boiling are discussed, which were studied by using holographic interferometry. This inertialess and non-intrusive measuring technique allows interesting insights into fluid dynamics and thermodynamics of phase change processes. The resistance for the heat transport through the phase boundaries is mainly on the liquid side and therefore the heat transfer coefficient can expressed by simple correlations following the procedure in forced convective flow. For the sake of simple boundary conditions first bubble condensation in subcooled liquids with constant and homogenous temperature are studied and than the more complex situation with large temperature gradients in the wall near boundary during subcooled boiling are discussed.Dedicated to Prof. Dieter Mewes on the occasion of his 65th birthday.  相似文献   

16.
This paper deals with the modelling and numerical simulation of isothermal bubbly flows with multi-size bubbles. The study of isothermal bubbly flows without phase change is a first step towards the more general study of boiling bubbly flows. Here, we are interested in taking into account the features of such isothermal flow associated to the multiple sizes of the different bubbles simultaneously present inside the flow. With this aim, several approaches have been developed. In this paper, two of these approaches are described and their results are compared to experimental data, as well as to those of an older approach assuming a single average size of bubbles. These two approaches are (i) the moment density approach for which two different expressions for the bubble diameter distribution function are proposed and (ii) the multi-field approach. All the models are implemented into the NEPTUNE_CFD code and are compared to a test performed on the MTLOOP facility. These comparisons show their respective merits and shortcomings in their available state of development.  相似文献   

17.
This work proposes a novel physics-based model for the fluid mechanics and heat transfer associated with slug flow boiling in horizontal circular microchannels to update the widely used three-zone model of Thome et al. (2004). The heat transfer model has a convective boiling nature and predicts the time-dependent variation of the local heat transfer coefficient during the cyclic passage of a liquid slug, an evaporating elongated bubble and a vapor plug. The capillary flow theory, extended to incorporate evaporation effects, is applied to estimate the bubble velocity along the channel. A liquid film thickness prediction method also considering bubble proximity effects, which may limit the radial extension of the film, is included. The minimum liquid film thickness at dryout is set to the channel wall roughness. Theoretical heat transfer models accounting for the thermal inertia of the liquid film and for the recirculating flow within the liquid slug are utilized. The heat transfer model is compared to experimental data taken from three independent studies. The 833 slug flow boiling data points cover the fluids R134a, R245fa and R236fa, and channel diameters below 1 mm. The proposed evaporation model predicts more than 80% of the database to within ±30%. It demonstrates a stronger contribution to heat transfer by the liquid slugs and correspondingly less by the thin film evaporation process compared to the original three-zone model. This model represents a new step towards a complete physics-based modelling of the bubble dynamics and heat transfer within microchannels under evaporating flow conditions.  相似文献   

18.
Experiments on the depressurization of high-pressure vessels have shown the vaporization occurs mainly in “boiling shocks” moving with a velocity ∼ 10 m/s. This phenomenon was explained by proposing a boiling liquid model which takes into account the possibility of bubble fragmentation due to instability developing in the flow around the bubbles [1]. In the present study, this model is used for modeling the flow in a Laval nozzle. The flows from vessels and nozzle flows are described without variation of the free parameters, namely, the initial number of bubbles and the critical Weber number. The existence of self-oscillating regimes of boiling-liquid flow through a nozzle is detected. The origin of the oscillations is established.  相似文献   

19.
Rectangular node electrodes were developed with micro-fabrication techniques in order to produce an electrolytic micro-bubbler which, while subjected to a convective flow, can generate bubbles of nearly uniform size with mean diameters of 50 μm or less. The devices were fabricated and placed in both a quiescent tap water chamber and a water channel operating at laminar flow rates. The effect of applied voltage and flow conditions on the bubbles generated was tested on single electrode pairs. Videos of the bubbles generated by the devices were taken from which the bubble sizes and generation rates were recorded.It was found that higher applied voltages coincided with smaller average bubble size, a narrower distribution of bubble sizes, higher bubble fluxes, and a higher current efficiency. The imposition of a hydrodynamic flow was shown to reduce average bubble size, narrow the range of bubble sizes, and reduce current efficiency. Smaller electrode nodes were seen to reduce the number of active nucleation sites and thus produced a narrower bubble size distribution. In the best case, the bubble distribution was nearly mono-disperse with a small average bubble diameter (ca. 40 μm) with repeatable mean bubble diameters and bubble fluxes. Intermediate values of the ratio of electrode node width and cathode/anode spacing provided the largest average bubble diameters.  相似文献   

20.
This study performed a survey on existing correlations for interfacial area concentration (IAC) prediction and collected an IAC experimental database of two-phase flows taken under various flow conditions in large diameter pipes. Although some of these existing correlations were developed by partly using the IAC databases taken in the low-void-fraction two-phase flows in large diameter pipes, no correlation can satisfactorily predict the IAC in the two-phase flows changing from bubbly, cap bubbly to churn flow in the collected database of large diameter pipes. So this study presented a systematic way to predict the IAC for the bubbly-to-churn flows in large diameter pipes by categorizing bubbles into two groups (group 1: spherical or distorted bubble, group 2: cap bubble). A correlation was developed to predict the group 1 void fraction by using the void fraction for all bubble. The group 1 bubble IAC and bubble diameter were modeled by using the key parameters such as group 1 void fraction and bubble Reynolds number based on the analysis of Hibiki and Ishii (2001, 2002) using one-dimensional bubble number density and interfacial area transport equations. The correlations of IAC and bubble diameter for group 2 cap bubbles were developed by taking into account the characteristics of the representative bubbles among the group 2 bubbles and the comparison between a newly-derived drift velocity correlation for large diameter pipes and the existing drift velocity correlation of Kataoka and Ishii (1987) for large diameter pipes. The predictions from the newly-developed two-group IAC correlation were compared with the collected experimental data in gas–liquid bubbly to churn flow regimes in large diameter pipes and their mean absolute relative deviations were obtained to be 28.1%, 54.4% and 29.6% for group 1, group 2 and all bubbles respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号