首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 261 毫秒
1.
In most laser material processing, material removal by different mechanisms is involved. Here, application of acoustic signals with thermoelastic (below threshold) and breakdown origin (above threshold) together with plasma plume analysis as a simple monitoring system of interaction process is suggested. In this research the interaction of pulse CO2 laser with 200 ns duration and maximum energy of 1.3 J operating at 1 Hz with austenitic stainless steel (316-L) is reported. The results showed that the non-linear point of the curve can serve as a useful indicator of melting fluence threshold (in this case ≈830 J cm−2) with corresponding temperature calculated using plasma plume analysis. Higher acoustic amplitudes and larger plasma plume volume indicates more intense interaction. Also, analysis showed that a phase explosion process with material removal (ejecta) in the form of non-adiabatic (i.e., dt ? α−1) is at play after laser pulse is ended. Also, SEM photographs show different surface quality medication at different laser intensities, which indicates the importance of recoil momentum pressure and possibly electrons and ions densities in heat transfer. Finally, electrochemical test indicate an improved corrosion resistance for laser treated samples compared to untreated ones.  相似文献   

2.
Laser microprocessing of several biopolymers from renewable resources is studied. Three proteinic materials were either extracted from the extracellular matrix like Silk Fibroin/Sericin and collagen, or coming from a commercial source like gelatin. All can find future applications in biomedical experimentation, in particular for cell scaffolding. Films of ∼hundred of microns thick were made by aqueous solution drying and laser irradiation. Attention is paid to the properties making them processable with two laser sources: the ultraviolet and nanosecond (ns) KrF (248 nm) excimer and the infrared and femtosecond (fs) Yb:KGW laser. The UV radiation is absorbed in a one-photon resonant process to yield ablation and the surface foaming characteristics of a laser-induced pressure wave. To the contrary, resonant absorption of the IR photons of the fs laser is not possible and does not take place. However, the high field of the intense I>∼1012 W/cm2 femtosecond laser pulse ionizes the film by the multiphoton absorption followed by the electron impact mechanism, yielding a dense plasma capable to further absorb the incident radiation of the end of the pulse. The theoretical model of this absorption is described in detail, and used to discuss the presented experimental effects (cutting, ablation and foaming) of the fs laser. The ultraviolet laser was used to perform simultaneous multiple spots experiments in which energetic foaming yields melt ejection and filament spinning. Airborne nanosize filaments “horizontally suspended by both ends” (0.25 μm diameter and 10 μm length) of silk biopolymer were observed upon irradiation with large fluences.  相似文献   

3.
Pulsed laser deposition of ZnO in high pressure gas offers a route for the catalyst-free preparation of ZnO nanorods less than 10 nm in diameter. This paper describes the results of some experiments to investigate the laser plume dynamics in the high gas pressure (5 × 103-104 Pa) regime used for PLD of ZnO nanorods. In this regime the ablation plume is strongly coupled to the gas and the plume expansion is brought to a halt within about 1 cm from the target. A 248 nm excimer laser was used to ablate a ceramic ZnO target in various pressures of argon. Time- and space-resolved UV/vis emission spectroscopy and Langmuir probe measurements were used to diagnose the plasma and follow the plume dynamics. By measuring the spatial profiles of Zn I and Zn II spectral lines it was possible to follow the propagation of the external and internal shock waves associated with the interaction of the ablation plume with the gas. The Langmuir probe measurements showed that the electron density was 109-1010 cm−3 and the electron temperature was several eV. At these conditions the ionization equilibrium is described by the collisional-radiative model. The plume dynamics was also studied for ZnO targets doped with elements which are lighter (Mg), comparable to (Ga), and heavier (Er) than Zn, to see if there is any elemental segregation in the plume.  相似文献   

4.
Long pulse laser shots of the PALS iodine laser in Prague have been used to obtain metal target ablation at various experimental conditions. Attention is paid mainly to the dependencies of the crater diameter on the position of minimum laser-focus spot with regard to the target surface, by using different laser wavelengths and laser energies. Not only a single one, but two minima, independently of the wavelength, of the target irradiation angle and of the target material, were recorded. Significant asymmetries, ascribed to the non-linear effects of intense laser beam with pre-formed plasma, were found, too. Estimations of ejected mass per laser pulse are reported and used to calculate the efficiency of laser-driven loading. Results on metal target ablation and crater formation at high intensities (from 2 × 1013 to 3 × 1016 W/cm2) are presented and compared. Crater depth, crater diameter and etching yield are reported versus the laser energy, in order to evaluate the ablation threshold fluence.  相似文献   

5.
The structure and evolution of the laser-induced vapor plume and shockwave were measured from femtosecond time resolved shadowgraph images. By changing the wavelength of the probe beam (400 and 800 nm), differences in the opacity of the vapor plume were measured as a function of delay time from the ablation laser pulse. The evolution of the temperature and electron number density during and after the ablation laser pulse were determined and compared for ablation in argon and helium background gases. A laser supported detonation wave (LSD) observed for ablation in argon, blocks the incoming laser energy and generates a high-pressure region above the vapor plume.  相似文献   

6.
This study is focused on exploring the feasibility of an all-optic surface scanning method in determining the size and position of a submerged, laser generated, optoacoustic (OA) source. The optoacoustic effect in this case was generated when the absorption of a short electromagnetic pulse in matter caused a dielectric breakdown, a plasma emission flash and a subsequent acoustic wave. In the experiment, a laser pulse with λ = 1064 nm and 12 ns pulse length was aimed at a volume of deionized water. When the laser beam was focused by a f = 16 mm lens, a single dielectric breakdown spot occurred. When a f = 40 mm was used several breakdowns in a row were induced. The breakdowns were photographed using a double shutter camera. The acoustic wave generated by the dielectric breakdowns were detected at a point on the water surface using a laser Doppler vibrometer (LDV). First, the LDV signal was used to calculate the speed of sound with an accuracy of 10 m/s. Secondly, the location and length of the dielectric breakdown was calculated with an accuracy of 1 mm. The calculated position matched the breakdown location recorded by a camera. The results show that it is possible to use LDV surface measurements from a single spot to determine both the position and length of the OA source as well as the speed of sound in the medium. Furthermore, the LDV measurements also show a secondary peak that originates from the OA source. To unravel the origin and properties of this interesting feature, further investigations are necessary  相似文献   

7.
We present an experimental characterization describing the characteristics features of the plasma plume dynamics and material removal efficiency during ultrashort, visible (527 nm, ≈300 fs) laser ablation of nickel in high vacuum. The spatio-temporal structure and expansion dynamics of the laser ablation plasma plume are investigated by using both time-gated fast imaging and optical emission spectroscopy. The spatio-temporal evolution of the ablation plume exhibits a layered structure which changes with the laser pulse fluence F. At low laser fluences (F<0.5 J/cm2) the plume consists of two main populations: fast Ni atoms and slower Ni nanoparticles, with average velocities of ≈104 m/s for the atomic state and ≈102 m/s for the condensed state. At larger fluences (F>0.5 J/cm2), a third component of much faster atoms is observed to precede the main atomic plume component. These atoms can be ascribed to the recombination of faster ions with electrons in the early stages of the plume evolution. A particularly interesting feature of our analysis is that the study of the ablation efficiency as a function of the laser fluence indicates the existence of an optimal fluence range (a maximum) for nanoparticles generation, and an increase of atomization at larger fluences. PACS 52.50.-b; 52.38.Mf; 79.20.Ds; 81.07.-b  相似文献   

8.
Laser fluence, repetition rate and pulse duration effects on paint ablation   总被引:1,自引:0,他引:1  
The efficiency (mm3/(J pulse)) of laser ablation of paint was investigated with nanosecond pulsed Nd:YAG lasers (λ = 532 nm) as a function of the following laser beam parameters: pulse repetition rate (1-10,000 Hz), laser fluence (0.1-5 J/cm2) and pulse duration (5 ns and 100 ns). In our study, the best ablation efficiency (η ≅ 0.3 mm3/J) was obtained with the highest repetition rate (10 kHz) at the fluence F = 1.5 J/cm2. This ablation efficiency can be associated with heat accumulation at high repetition rate, which leads to the ablation threshold decrease. Despite the low thermal diffusivity and the low optical absorption of the paint (thermal confinement regime), the ablation threshold fluence was found to depend on the pulse duration. At high laser fluence, the ablation efficiency was lower for 5 ns pulse duration than for the one of 100 ns. This difference in efficiency is probably due to a high absorption of the laser beam by the ejected matter or the plasma at high laser intensity. Accumulation of particles at high repetition rate laser ablation and surface shielding was studied by high speed imaging.  相似文献   

9.
A study of VIS laser ablation of graphite, in vacuum, by using 3 ns Nd:YAG laser radiation is reported. Nanosecond pulsed ablation gives an emission mass spectrum attributable to Cn neutral and charged particles. Mass quadrupole spectroscopy, associated to electrostatic ion deflection, allows estimation of the velocity distributions of several of these emitting species within the plume as a function of the incident laser fluence. Time gated plume imaging and microscopy measurements have been used to study the plasma composition and the deposition of thin carbon films. The multi-component structure of the plume emission is rationalized in terms of charge state, ions temperature and neutrals temperature. A special regard is given to the ion acceleration process occurring inside the plasma due to the high electrical field generated in the non-equilibrium plasma conditions. The use of nanosecond laser pulses, at fluences below 10 J/cm2, produces interesting C-atomic emission effects, as a high ablation yield, a high fractional ionization of the plasma and presence of nanostructures deposited on near substrates.  相似文献   

10.
Temporal and spectral characteristics of laser-induced breakdown plasma in colloidal solutions of gold nanoparticles were experimentally studied. Near-infrared laser sources of nanosecond pulses were used. It was shown that under certain experimental conditions nanosized plasma around nanoparticles might change to laser-induced breakdown plasma in liquid. The dependencies of the plasma temporal and spectral characteristics on laser pulse duration as well as resulting nanoparticles properties were studied. Laser-induced breakdown plasma lifetime was shown to be comparable with laser pulse duration. The efficiency of gold nanoparticles fragmentation was shown to depend on laser pulse duration. Similar experiments were carried out under reduced external pressure. It turned out to affect the properties of both plasma plume and nanoparticles. Transmission electron microscopy and disc measuring centrifuge were used for nanoparticle morphology and size analysis. Extinction spectra of colloidal solutions and emission spectra of plasma were studied by means of optical spectroscopy.  相似文献   

11.
INTRODUCTION

When a high-powered laser beam is focused onto a small area or spot of a solid surface, the temperature of the locally heated region rises rapidly to the vaporization temperature of the solid material and an optically induced plasma, frequently called a laser-induced plasma (LIP) or laser-ablated plasma (LAP) or laser spark is formed at the surface. The plasma will be formed when the laser power density exceeds the breakdown threshold value of the solid surface. Although different materials have different breakdown thresholds, an optical plasma is produced when the laser power density exceeds several megawatts per centimeter squared (106 - 109 W/cm2). This plasma has been used for sampling, atomization, excitation, and ionization in analyhcal atomic spectroscopy. It has also been frequently used and proposed as a source for atomic emission spectrometry (AES). In this case the technique is most ofien referred to as laser microprobe optical emission spectrometry (LM-OES) developed by Brech and Cross [1] in early nineteen-sixties or more recently called laser-induced breakdown spectrometry (LIBS) [2,3]. Generally, this analyhcal technique involves two steps; the pulsed focused laser beam directed into a gaseous sample or the surface of a solid or liquid, to produce a transient LIP, followed by the measurement of a characteristic atomic emission signal related to some species present in the plasma. The LIP formed is tightly focused and consists of vaporized atoms, ions, electrons, and molecular fragments. The application of LIBS for direct spectrochemical analysis is a rapidly growing field ranging from the detection of atmospheric pollutants to monitoring of material production processes, and even to “clean-room” technology. Laser ablation techniques have also been applied for solid sample introduction into other plasma sources [4–9]. In recent years, the powerful technique of LIBS as an analytical tool has been recognized by a number of research groups, and has led to an increasing number of publications on the applications of LIBS both in the laboratory and in industry. This growing success of LIBS is a result of thorough research carried out to understand the related plasma physical processes, aided by marked improvements in laser systems and photodetector technology.  相似文献   

12.
S.S. Yap 《Applied Surface Science》2007,253(24):9521-9524
In pulsed Nd:YAG laser ablation of highly oriented pyrolytic graphite (HOPG) at 10−6 Torr, diamond-like carbon (DLC) are deposited at laser wavelengths of 1064, 532, and 355 nm on substrates placed in the target-plane. These target-plane samples are found to contain varying sp3 content and composed of nanostructures of 40-200 nm in size depending on the laser wavelength and laser fluence. The material and origin of sp3 in the target-plane samples is closely correlated to that in the laser-modified HOPG surface layer, and hardly from the backward deposition of ablated carbon plume. The surface morphology of the target-plane samples shows the columnar growth and with a tendency for agglomeration between nanograins, in particular for long laser wavelength at 1064 nm. It is also proposed that DLC formation mechanism at the laser-ablated HOPG is possibly via the laser-induced subsurface melting and resolidification.  相似文献   

13.
We provide guidelines to femtosecond laser users to select ad hoc laser parameters, namely the fluence and pulse duration, in the context of the development of ablation processes at the surface of dielectrics using single femtosecond pulses. Our results and discussion are based on a comprehensive experimental and theoretical analysis of the energy deposition process at the surface of fused silica samples and of their postmortem ablation characteristics, in the range of intensities from 1013 to 1015 W/cm2. We show experimentally and numerically that self-induced plasma transient properties at the pulse timescale dramatically determine the efficiency of energy deposition and affect the resulting ablation morphology. In practice, we determine that the precise measurement of two characteristic fluence values, namely the laser-induced ablation threshold F th,LIAT and the fluence F opt for maximum ablation efficiency, are only required to qualify the outcomes of laser ablation at the surface of a dielectric in an extended range of applied fluence.  相似文献   

14.
180 femtoseconds (1 kHz) and 10 picoseconds (1-50 kHz) ultrafast laser micro-structuring of the metals Ti alloy, Al and Cu have been studied for the purpose of industrial application. The effects of some key laser operating parameters were investigated. The evolution of surface morphology revealed that laser pulses overlap in a range around the spatial FWHM can help to achieve optimal residual surface roughness. While observed ablation rate (unit: μm3 per pulse) changed dramatically with repetition rate due to the combined effects of plasma absorption, residual thermal energy and phase transition, higher throughput can be achieved with higher repetition rate. This study also indicated that residual surface roughness is almost independent of repetition rate at 10 ps temporal pulse length. The ablation depth is approximately proportional to the number of overscan; however, machining accuracy deteriorates, especially for femtosecond laser processing and metals with low thermal conductivity and short electron-phonon coupling time.  相似文献   

15.
Spectroscopic measurements in the UV/VIS region show reduced transmission through laser-induced backside wet etching (LIBWE) of fused silica. Absorption coefficients of up to 105 cm−1 were calculated from the transmission measurements for a solid surface layer of about 50 nm. The temperatures near the interface caused by laser pulse absorption, which were analytically calculated using a new thermal model considering interface and liquid volume absorption, can reach 104 K at typical laser fluences. The high absorption coefficients and the extreme temperatures give evidence for an ablation-like process that is involved in the LIBWE process causing the etching of the modified near-surface region. The confinement of the ablation/etching process to the modified near-surface material region can account for the low etch rates observed in comparison to front-side ablation.  相似文献   

16.
A femtosecond laser pulse with power density of 1013 to 1014 W/cm2 incident on a metal target causes ablation and ejection of the surface layer. The ejected laser plume has a complicated structure. At the leading front of the plume, there is a spall layer where the material is in a molten state. The spall layer is a remarkable part of the plume in that the liquid-phase density does not decrease with time elapsed. This paper reports theoretical and experimental studies of the formation, structure, and ejection of the laser plume. The results of molecular dynamics simulations and a theoretical survey of plume structure based on these results are presented. It is shown that the plume has no spall layer when the pulse fluence exceeds an evaporation threshold F ev. As the fluence increases from the ablation threshold F a to F ev, the spall-layer thickness for gold decreases from 100 nm to a few lattice constants. Experimental results support theoretical calculations. Microinterferometry combined with a pump-probe technique is used to obtain new quantitative data on spallation dynamics for gold. The ablation threshold is evaluated, the characteristic crater shape and depth are determined, and the evaporation threshold is estimated.  相似文献   

17.
Phase transition on the surface of an aluminium target and vapour plasma induced by laser irradiation in the nanosecond regime at the wavelengths of 1.06 and 0.248 μm with an intensity of 108-109 W/cm2 in vacuum are analysed. Particular attention is paid to the wavelength dependence of the observed phenomena and the non-one-dimensional effect caused by the Gaussian laser intensity distribution. A transient two-dimensional model is used which includes conductive heat transfer in the condensed phase, radiative gas dynamics and laser radiation transfer in the plasma as well as surface evaporation and back condensation at the phase interface. It is shown that distinctions in phase transition dynamics for the 1.06 and 0.248 μm radiation result from essentially different characteristics of the laser-induced plasmas. For the 1.06 μm radiation, evaporation stops after the formation of hot optically thick plasma, can occasionally resume at a later stage of the pulse, proceeds non-uniformly in the spot area, and the major contribution to the mass removal occurs in the outer part of the irradiated region. Plasma induced by the 0.248 μm laser is much more transparent therefore evaporation does not stop but continues in the subsonic regime with the Mach number of about 0.1.  相似文献   

18.
In this paper we present evidence for a phase explosion during the laser-induced ablation process by studying the optical reflectivity of the ablated plume. The ablation was produced by irradiating thin film aluminum coated on a quartz substrate with a single pulse laser beam in ambient air. The laser pulse was provided by the second harmonic of a Q-switched Nd:YAG laser with ∼10 ns pulse duration. The transmission of a low power He–Ne laser beam through the hot ablated material plume and its reflection (from the front surface, and rear surface of aluminum film) were also monitored during the duration of the ablation event. The results show that the front surface reflectivity is enhanced at an early time of ablation which is described as strong evidence for the creation of a phase explosion in this process.  相似文献   

19.
20.
Pulsed digital holographic interferometry has been used to compare the laser ablation process of a Q-switched Nd-YAG laser pulse (wavelength 1064 nm, pulse duration 12 ns) on two different metals (Zn and Ti) under atmospheric air pressure. Digital holograms were recorded for different time delays using collimated laser light (532 nm) passed through the volume along the target. Numerical data of the integrated refractive index field were calculated and presented as phase maps. Intensity maps were calculated from the recorded digital holograms and are used to calculate the attenuation of the probing laser beam by the ablated plume. The different structures of the plume, namely streaks normal to the surface for Zn in contrast to absorbing regions for Ti, indicates that different mechanisms of laser ablation could happen for different metals for the same laser settings and surrounding gas. At a laser fluence of 5 J/cm2, phase explosion appears to be the ablation mechanism in case of Zn, while for Ti normal vaporization seems to be the dominant mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号