首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Charge transfer dynamics between an adsorbed molecule and a rutile TiO(2)(110) surface have been investigated in three organometallic dyes related to multicenter water splitting dye complexes: Ru 535 (cis-bis(isothiocyanato)bis(2,2'-bipyridyl-4,4'-dicarboxylato)-ruthenium(II)), Ru 455 (cis-bis(2,2'-bipyridyl)-(2,2'-bipyridyl-4,4'-dicarboxylic acid)-ruthenium(II)), and Ru 470 (tris(2,2'-bipyridyl-4,4'-dicarboxylic acid)-ruthenium(II)). The adsorption of the dye molecules on the rutile TiO(2)(110) surface has been studied using core-level and valence photoemission. Dye molecules were deposited in situ using ultrahigh vacuum electrospray deposition. Core-level photoemission spectra reveal that each complex bonds to the surface via deprotonation of two carboxylic groups. All three dye complexes show evidence of ultrafast charge transfer to the TiO(2) substrate using the core-hole clock implementation of resonant photoemission spectroscopy.  相似文献   

2.
We report the application of spectroelectrochemical techniques to compare the hole percolation dynamics of molecular networks of two ruthenium bipyridyl complexes adsorbed onto mesoporous, nanocrystalline TiO(2) films. The percolation dynamics of the ruthenium complex cis-di(thiocyanato)(2,2'-bipyridyl-4,4'-dicarboxylic acid)-(2,2'-bipyridyl-4,4'-tridecyl) ruthenium(II), N621, is compared with those observed for an analogous dye with an additional tri-phenyl amine (TPA) donor moiety, cis-di(thiocyanato)(2,2'-bipyridyl-4,4'-dicarboxylic acid)-(2,2'-bipyridyl-4,4'-bis(vinyltriphenylamine)) ruthenium(II), HW456. The in situ oxidation of these ruthenium complexes adsorbed to the TiO(2) films is monitored by cyclic voltammetry and voltabsorptometry, whilst the dynamics of hole (cation) percolation between adsorbed ruthenium complexes is monitored by potentiometric spectroelectrochemistry and chronoabsorptometry. The hole diffusion coefficient, D(eff), is shown to be dependent on the dye loading on the nanocrystalline TiO(2) film, with a threshold observed at ~60% monolayer surface coverage for both dyes. The hole diffusion coefficient of HW456 is estimated to be 2.6 × 10(-8) cm(2)/s, 20-fold higher than that obtained for the control N621, attributed to stronger electronic coupling between the TPA moieties of HW456 accelerating the hole percolation dynamics. The presence of mercuric ions, previously shown to bind to the thiocyanates of analogous ruthenium complexes, resulted in a quenching of the hole percolation for N621/TiO(2) films and an enhancement for HW456/TiO(2) films. These results strongly suggest that the hole percolation pathway is along the overlapped neighbouring -NCS groups for the N621 molecules, whereas in HW456 molecules cation percolation proceeds between intermolecular TPA ligands. These results are discussed in the context of their relevance to the process of dye regeneration in dye sensitised solar cells, and to the molecular wiring of wide bandgap inorganic materials for battery and sensing applications.  相似文献   

3.
Trithiocyanato(4,4',4'-tricarboxy-2,2':6',2'-terpyridine)ruthenium(II), "black dye", was adsorbed on a rutile TiO(2)(110) surface and imaged by an ultrahigh vacuum scanning tunneling microscope. The TiO(2)(110)-(1 x 1) surface was prepared in a vacuum, covered with pivalate monolayer, and immersed in acetonitrile containing black dye. Black dyes exchanging preadsorbed pivalates were observed on the surface as protrusions with lateral dimensions from 2 to 10 nm. Protrusions with a minimum lateral dimension of 2 nm were assigned to single, isolated black dyes, and larger protrusions were attributed to aggregated dyes. When deoxycholic acid was added to the dye solution, the number ratio of the single dyes to the aggregated dyes increased, while adsorbed deoxycholic acid was not observed.  相似文献   

4.
We report on rapid ambipolar cross-surface charge transfer within self-assembled monolayers (SAM) of the heteroleptic Ru-complexes cis-RuLL'(NCS)(2) (L = 2,2'-bipyridyl-4,4'-dicarboxylic acid, L' = 4,4'-dinonyl-2,2'-bipyridyl) (1) and cis-RuLL' '(NCS)(2) (L = 2,2'-bipyridyl-4,4'-dicarboxylic acid, L' = 4,4'-dimethyl-2,2'-bipyridyl) (2) on the surface of mesoscopic insulating oxide films. The bipyridyl ligands of the Ru-complex transport electrons, while the NCS groups plays a pivotal role in mediating surface confined hole percolation. Molecular dynamics calculations show the NCS ligands of 1 and 2 to orient in a fashion that enhances the overlap of the HOMOs of neighboring ruthenium complexes. Using ab initio Hartree-Fock calculations the electronic coupling matrix element for intermolecular hole exchange at the surface is estimated to be 0.13 eV. Cyclic voltammetry as well as spectroelectrochemical and impedance measurements performed with a series of other Ru-complexes confirmed the control of the cross surface charge transfer by the molecular structure. Complex 2 shows the highest percolation rate, the surface hole diffusion coefficient being 1.1 x 10(-8) cm(2)/s. The effects of the ligand properties, such as denticity, geometry, and size, on the intermolecular charge transport are discussed in detail.  相似文献   

5.
When adsorbed to optically transparent, thin films of TiO(2) nanoparticles on glass, the aqua complex [Ru(II)(tpy)(bpy(PO(3)H(2))(2))(OH(2))](2+) (bpy(PO(3)H(2))(2) is 2,2'-bipyridyl-4,4'-diphosphonic acid; tpy is 2,2':6',2' '-terpyridine) is oxidized by Ce(IV)(NH(4))(2)(NO(3))(6) in 0.1 M HClO(4) to its Ru(IV)=O(2+) form as shown by UV-visible measurements and analysis of oxidative equivalents by oxidation of hydroquinone to quinone. Kinetic studies on the oxidations of cyclohexene, benzyl alcohol, phenol, and trans-stilbene by surface-bound Ru(IV)=O(2+) by UV-visible monitoring reveal direct evidence for initial 2-electron steps to give Ru(II) intermediates in all four cases. These steps are masked in solution where Ru(IV) --> Ru(II) reduction is followed by rapid reactions between Ru(II) intermediates and Ru(IV)=O(2+) to give Ru(III). Reactions between Ru(II) and Ru(IV)=O(2+) on the surface are inhibited by binding to the surface, which restricts translational mobility. Rate constants on the surface and in solution are comparable, pointing to comparable reactivities. The surface experiments give unprecedented insight into oxidation mechanism with important implications for achieving product selectivity in synthesis by limiting oxidation to two electrons.  相似文献   

6.
A host supramolecular structure consisting of bis-(2,2':6',2' '-terpyridine)-4'-oxyhexadecane (BT-O-C16) is shown to respond to guest molecules in dramatic ways, as observed by using scanning tunneling microscopy (STM) on a highly oriented pyrolytic graphite surface under ambient conditions. It is observed that small linear molecules can be encapsulated within the host supramolecular lattice. The characteristics of the host structure were nearly unaffected by the encapsulated guest molecules of terphthalic acid (TPA) dimers, whereas appreciable changes in cavity dimension can be observed with azobenzene-4,4'-dicarboxylic acid. The STM study and density functional theory (DFT) analysis reveal that intermolecular hydrogen bonding interaction plays an essential role in forming the assembling structures. The difference in guest molecule length is considered the important cause for the different guest-host complexes.  相似文献   

7.
A three-channel transmission line (TL) impedance model is proposed to address the charge transport behavior of molecular functionalized mesoscopic oxide electrodes at different bias conditions. A full general solution of the three-channel TL for the system is provided in this paper. Selected experimental results of impedance spectroscopy of mesoscopic Al2O3 and TiO2 networks, covered with a monolayer of Ru complex cis-RuLL'(NCS)2 (L = 2,2'-bipyridyl-4,4'-dicarboxylic acid, L' = 4,4'-dinonyl-2,2'-bipyridyl) (Z907), are briefly discussed. It shows that the model constitutes a useful tool for characterizing nanoporous electrodes functionalized with organic conducting layers in the surface. The model makes it possible to determine the separate conductivity of substrate oxide and molecular layer, and interfacial charge transfer, in the functionalized nanostructured electrodes.  相似文献   

8.
The interaction of the dye molecule, N3 (cis-bis(isothiocyanato)bis(2,2(')-bipyridyl-4,4(')-dicarboxylato)-ruthenium(II)), and related ligand molecules with a Au(111) surface has been studied using synchrotron radiation-based electron spectroscopy. Resonant photoemission spectroscopy (RPES) and autoionization of the adsorbed molecules have been used to probe the coupling between the molecules and the substrate. Evidence of charge transfer from the states near the Fermi level of the gold substrate into the lowest unoccupied molecular orbital (LUMO) of the molecules is found in the monolayer RPES spectra of both isonicotinic acid and bi-isonicotinic acid (a ligand of N3), but not for the N3 molecule itself. Calibrated x-ray absorption spectroscopy and valence band spectra of the monolayers reveals that the LUMO crosses the Fermi level of the surface in all cases, showing that charge transfer is energetically possible both from and to the molecule. A core-hole clock analysis of the resonant photoemission reveals a charge transfer time of around 4 fs from the LUMO of the N3 dye molecule to the surface. The lack of charge transfer in the opposite direction is understood in terms of the lack of spatial overlap between the π?-orbitals in the aromatic rings of the bi-isonicotinic acid ligands of N3 and the gold surface.  相似文献   

9.
A family of [Pt(II)(diimine)(dithiolate)] complexes of general formula [Pt{X,X'(CO(2)R)(2)-2,2'-bipyridyl}(maleonitriledithiolate)] (where X = 3, 4, or 5 and R = H or Et) have been synthesized, spectroscopically and electrochemically characterized, and attached to a TiO(2) substrate to be tested as solar cell sensitizers. A single-crystal X-ray structure showing a large torsion angle between the bipyridyl rings was determined for [Pt{3,3'(CO(2)Et)(2)-2,2'-bipyridyl}(maleonitriledithiolate)].MeCN. The effect of changing the position of the bipyridyl substituents from 3,3' to 4,4' and 5,5' is discussed with reference to structural and electronic changes seen within the different members of the family of molecules. The first UV/vis/NIR spectroelectrochemical study of complexes of this general formula is discussed. All three complexes (where R = H) were tested as solar cell sensitizers, with the 3,3'-disubstituted bipyridyl complex giving an intermediate dye loading value but superior photovoltaic performance to those of the other two. The performance of this sensitizer is then compared with that of a well-known Ru polypyridyl sensitizer, the ditetrabutylammonium salt of [RuL(2)(NCS)(2)] (L = 2,2'-bipyridyl-4,4'-dicarboxylato), commonly called N719.  相似文献   

10.
Photophysical and (photo)electrochemical properties of a coumarin dye   总被引:2,自引:0,他引:2  
A new coumarin dye, cyano-{5,5-dimethyl-3-[2-(1,1,6,6-tetramethyl-10-oxo-2,3,5,6-tetrahydro-1H,4H,10H-11-oxa-3a-aza-benzo[de]anthracen-9-yl)vinyl]cyclohex-2-enylidene}-acetic acid (NKX-2753), was prepared and characterized with respect to photophysical and electrochemical properties. It was employed as a dye sensitizer in dye-sensitized solar cells and showed efficient photon-to-electron conversion properties. The photocurrent action spectrum exhibited a broad feature with a maximum incident photon-to-electron conversion efficiency (IPCE) of 84% at 540 nm, which is comparable to that for the famous red dye RuL2(NCS)2 (known as N3), where L stands for 2,2'-bipyridyl-4,4'-dicarboxylic acid. The sandwich-type solar cell with NKX-2753, under illumination of full sun (AM1.5, 100 mW cm(-2)), produced 16.1 mA cm(-2) of short-circuit photocurrent, 0.60 V of open-circuit photovoltage, and 0.69 of fill factor, corresponding to 6.7% of overall energy conversion efficiency using 0.1 M LiI, 0.05 M I2, 0.1 M guanidinium thiocyanate, and 0.6 M 1,2-dimethyl-3-n-propyl-imidazolium iodide in dry acetonitrile as redox electrolyte. In comparison with its analogue NKX-2586 (Langmuir 2004, 20, 4205), NKX-2753 with an extra side ring on the alkene chain produced much higher IPCE values at the same conditions. The side ring acted as a spacer to efficiently prevent dye aggregation when adsorbed on the TiO2 surface, resulting in significant improvements of short-circuit photocurrent, open-circuit photovoltage, and fill factor compared with NKX-2586 that aggregated on the TiO2 surface.  相似文献   

11.
A new series of panchromatic ruthenium(II) sensitizers derived from carboxylated terpyridyl complexes of tris-thiocyanato Ru(II) have been developed. Black dye containing different degrees of protonation [(C(2)H(5))(3)NH][Ru(H(3)tcterpy)(NCS)(3)] 1, [(C(4)H(9))(4)N](2)[Ru(H(2)tcterpy)(NCS)(3)] 2, [(C(4)H(9))(4)N](3)[Ru(Htcterpy)(NCS)(3)] 3, and [(C(4)H(9))(4)N](4)[Ru(tcterpy)(NCS)(3)] 4 (tcterpy = 4,4',4' '-tricarboxy-2,2':6',2' '-terpyridine) have been synthesized and fully characterized by UV-vis, emission, IR, Raman, NMR, cyclic voltammetry, and X-ray diffraction studies. The crystal structure of complex 2 confirms the presence of a Ru(II)N6 central core derived from the terpyridine ligand and three N-bonded thiocyanates. Intermolecular H-bonding between carboxylates on neighboring terpyridines gives rise to 2-D H-bonded arrays. The absorption and emission maxima of the black dye show a bathochromic shift with decreasing pH and exhibit pH-dependent excited-state lifetimes. The red-shift of the emission maxima is due to better pi-acceptor properties of the acid form that lowers the energy of the CT excited state. The low-energy metal-to-ligand charge-transfer absorption band showed marked solvatochromism due to the presence of thiocyanate ligands. The Ru(II)/(III) oxidation potential of the black dye and the ligand-based reduction potential shifted cathodically with decreasing number of protons and showed more reversible character. The adsorption of complex 3 from methoxyacetonitrile solution onto transparent TiO(2) films was interpreted by a Langmuir isotherm yielding an adsorption equilibrium constant, K(ads), of (1.0 +/- 0.3) x 10(5) M(-1). The amount of dye adsorbed at monolayer saturation was (n(alpha) = 6.9 +/- 0.3) x 10(-)(8) mol/mg of TiO(2), which is around 30% less than that of the cis-di(thiocyanato)bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) complex. The black dye, when anchored to nanocrystalline TiO(2) films achieves very efficient sensitization over the whole visible range extending into the near-IR region up to 920 nm, yielding over 80% incident photon-to-current efficiencies (IPCE). Solar cells containing the black dye were subjected to analysis by a photovoltaic calibration laboratory (NREL, U.S.A.) to determine their solar-to-electric conversion efficiency under standard AM 1.5 sunlight. A short circuit photocurrent density obtained was 20.5 mA/cm(2), and the open circuit voltage was 0.72 V corresponding to an overall conversion efficiency of 10.4%.  相似文献   

12.
Two new heteroleptic ruthenium(II) photosensitizers that contains 2,2';6,2'-terpyridine with extended π-conjugation with donor groups, a 4,4'-dicarboxylic acid-2,2'-bipyridine anchoring ligand and a thiocyanate ligand have been designed, synthesized and fully characterized by CHN, mass spectrometry, UV-vis and fluorescence spectroscopies and cyclic voltammetry. The new sensitizers have either 3,5-di-tert-butyl phenyl (m-BL-5) or triphenylamine (m-BL-6) groups, where the molar extinction coefficient of both the sensitizers is higher than the analogous ruthenium dyes. Both the sensitizers were tested in dye-sensitized solar cells using two different redox electrolytes.  相似文献   

13.
Protons of N3, cis-bis(thiocyanato)bis(2,2'-bipyridyl-4,4'-dicarboxylic acid)ruthenium(II), were in situ exchanged on N3-loaded TiO2 films with alkali-metal, tetrabutylammonium, and guanidinium cations. This simple strategy improved the open-circuit photovoltage (V(oc)) significantly, resulting in enhancement of the power conversion efficiency by 10-25%. Electrochemical impedance spectra revealed that the in situ proton exchange of the N3-loaded film suppressed charge recombination between injected electrons and I(3-) ions in the electrolyte, which, together with the negative shift of the conduction band edge for TiO2, may account for the remarkably increased V(oc) upon proton exchange of N3.  相似文献   

14.
A new cyclometalated ruthenium complex, [Ru(6'-phenyl-4'-thiophen-2-yl-[2,2']bipyridinyl-4-carboxylic acid)(4,4',4'-tricarboxy- 2,2':6',2'-terpyridine)]Cl, for Dye Sensitized Solar Cells (DSSCs) is proposed. We have investigated the use of cuprous iodide (CuI) as an electrolyte additive, which in turn has shown photocurrent enhancements of more than 25% in our dye based cells. Using an ionic liquid based electrolyte, an efficiency of η = 5.7% has been accomplished under 1 sun irradiation. The origin of this photocurrent enhancement upon the CuI addition was studied by means of impedance spectroscopy and cyclic voltammetry under dark conditions. The reason behind such a photocurrent enhancement is attributed to an electrocatalytic effect of the CuI on the regeneration of the oxidized dye. Furthermore, the CuI addition did not affect the recombination processes between the injected electrons and the electrolyte nor the electron lifetime in the semiconductor TiO(2) film, which in turn resulted in no changes in the photovoltage.  相似文献   

15.
Liu P  Wong EL  Yuen AW  Che CM 《Organic letters》2008,10(15):3275-3278
"Iron(II) salt + 4,4',4'-trichloro-2,2':6',2'-terpyridine" is an effective catalyst for epoxidation and aziridination of alkenes and intramolecular amidation of sulfamate esters. The epoxidation of allylic-substituted cycloalkenes achieved excellent diastereoselectivities up to 90%. ESI-MS results supported the formation of iron-oxo and -imido intermediates. Derivitization of Cl 3terpy to O-PEG-OCH 3-Cl 2terpy renders the terpyridine unit to be recyclable, and the "iron(II) salt + 4,4'-dichloro-4'- O-PEG-OCH 3-2,2':6',2'-terpyridine" protocol can be reused without a significant loss of catalytic activity in the alkene epoxidation.  相似文献   

16.
Hexagonal Pd(II)- or Cd(II)-tetrakispyridinyl-based macrocycles are quantitatively self-assembled from 4'-(3-pyridinyl)-4,4'-di(tert-butyl)-2,2'?:?6',2'-terpyridine and structurally confirmed by NMR and TWIM-MS.  相似文献   

17.
Indium tin oxide (ITO) electrodes modified by attachment of tris(2,2'-bipyridine-4,4'-dicarboxylic acid) iron(II) are examined. The mode of attachment is believed to be via the COOH functions in a manner similar to attachment of similar carboxylate-containing compounds to TiO2 surfaces. On the surface the complex resides as a stable electrochemically active monolayer. These modified electrodes can efficiently catalyze the oxidation of certain cobalt complexes, specifically, tris(4,4'-di-tert-butyl-2,2'-bipyridine) cobalt(II). On the unmodified ITO surfaces this cobalt complex is essentially electrochemically inert. The catalytic process approaches diffusional control at very slow scan speeds. Also, the electro-catalysis is sufficiently efficient that the peak oxidation current for Co2+, under certain conditions, exceeds the i(p) for the surface oxidation of the adsorbed Fe2+ by >x100 and the current for the uncatalyzed oxidation of Co2+ by considerably more than that.  相似文献   

18.
Odobel F  Zabri H 《Inorganic chemistry》2005,44(16):5600-5611
This paper describes the synthesis of a new series of molecules composed of a ruthenium cation liganded by a chloro or a thiocyanato, a 4,4'-(diethoxycarbonyl)-2,2'-bipyridine, and a 2,2':6',2' '-terpyridine substituted in its 4' position by a difluoroborazaindacene or a zinc phthalocyanine. A set of conditions are reported to conveniently synthesize these dyads by a Stille cross-coupling reaction between the trimethyltin derivative of the organic chromophore and the corresponding ruthenium complex with 4'-bromo-2,2':6',2' '-terpyridine and 4,4'-(diethoxycarbonyl)-2,2'-bipyridine. The dyads were studied by UV-visible absorption spectroscopy, steady-state fluorescence, and electrochemistry. The results of these studies indicate strong electronic coupling between the zinc phthalocyanine unit and the ruthenium complex but weakly electronically coupled systems in the case of dyads containing a difluoroborazaindacene unit. The new bichromophoric systems display strong absorbance in the visible spectrum. An efficient quenching of the fluorescence of the organic chromophore by the nearby ruthenium complex was also observed in all of the dyads. In dyads connected to the borazaindacene, excitation spectra indicate efficient photoinduced energy transfer from the borazaindacene to the ruthenium complex.  相似文献   

19.
Photocurrent measurements have been made on nanocrystalline TiO2 surfaces derivatized by adsorption of a catalyst precursor, [Ru(tpy)(bpy(PO3H2)2)(OH2)]2+, or chromophore, [Ru(bpy)2 (bpy(PO3H2)2)]2+ (tpy is 2,2':6',2' '-terpyridine, bpy is 2,2'-bipyridine, and bpy(PO3H2)2 is 2,2'-bipyridyl-4,4'-diphosphonic acid), and on surfaces containing both complexes. This is an extension of earlier work on an adsorbed assembly containing both catalyst and chromophore. The experiments were carried out with the I3-/I- or quinone/hydroquinone (Q/H2Q) relays in propylene carbonate, propylene carbonate-water mixtures, and acetonitrile-water mixtures. Electrochemical measurements show that oxidation of surface-bound Ru(III)-OH2(3+) to Ru(IV)=O(2+) is catalyzed by the bpy complex. Addition of aqueous 0.1 M HClO4 greatly decreases photocurrent efficiencies for adsorbed [Ru(tpy)(bpy(PO3H2)2)(OH2)]2+ with the I3-/I- relay, but efficiencies are enhanced for the Q/H2Q relay in both propylene carbonate-HClO4 and acetonitrile-HClO4 mixtures. The dependence of the incident photon-to-current efficiency (IPCE) on added H2Q in 95% propylene carbonate and 5% 0.1 M HClO4 is complex and can be interpreted as changing from rate-limiting diffusion to the film at low H2Q to rate-limiting diffusion within the film at high H2Q. There is no evidence for photoelectrochemical cooperativity on mixed surfaces containing both complexes with the IPCE response reflecting the relative surface compositions of the two complexes. These results provide insight into the possible design of photoelectrochemical synthesis cells for the oxidation of organic substrates.  相似文献   

20.
The electrocatalytic oxidations of guanine, adenine, guanosine-5'-monophosphate(GMP) and ssDNA were performed in the presence of Fe(II) bis(2,2':6',2'-terpyridine) and Fe(II) tris(1,10-phenanthroline) complexes as homogeneous catalysts by cyclic voltammetric methods. The Fe(II/III) redox couple of these compounds is responsible for their catalytic properties. The electrocatalytic oxidation current of above substrates were developed from the anodic peak currents of Fe(II) bis(2,2':6',2'-terpyridine) and Fe(II) tris(1,10-phenanthroline) complexes at about +0.93 V and 0.97 V, respectively. The electrocatalytic oxidative properties of guanine by Fe(II) bis(2,2':6',2'-terpyridine) complex was measured by amperometry method using the rotating disk electrodes. Electropolymerization of Fe(II) tris(5-amino-1,10-phenanthroline) complex produced thin polymer films on gold and glassy carbon electrodes. The electrochemical quartz crystal microbalance (EQCM) and cyclic voltammetry were used to study the in situ growth of the polymer. The poly(FeII(5-NH(2)-1,10-phen)(3)) exhibited a good electrocatalytic oxidation towards guanine and also for the mixture of guanine and adenine too.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号