首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electrocatalytic oxidations of guanine, adenine, guanosine-5'-monophosphate(GMP) and ssDNA were performed in the presence of Fe(II) bis(2,2':6',2'-terpyridine) and Fe(II) tris(1,10-phenanthroline) complexes as homogeneous catalysts by cyclic voltammetric methods. The Fe(II/III) redox couple of these compounds is responsible for their catalytic properties. The electrocatalytic oxidation current of above substrates were developed from the anodic peak currents of Fe(II) bis(2,2':6',2'-terpyridine) and Fe(II) tris(1,10-phenanthroline) complexes at about +0.93 V and 0.97 V, respectively. The electrocatalytic oxidative properties of guanine by Fe(II) bis(2,2':6',2'-terpyridine) complex was measured by amperometry method using the rotating disk electrodes. Electropolymerization of Fe(II) tris(5-amino-1,10-phenanthroline) complex produced thin polymer films on gold and glassy carbon electrodes. The electrochemical quartz crystal microbalance (EQCM) and cyclic voltammetry were used to study the in situ growth of the polymer. The poly(FeII(5-NH(2)-1,10-phen)(3)) exhibited a good electrocatalytic oxidation towards guanine and also for the mixture of guanine and adenine too.  相似文献   

2.
Summary Gel chromatographic behaviour of tris(1, 10-phenanthroline)iron(II), tris(2,2′-bipyridine)iron(II) and tris(glycinato)cobalt(III) on Sephadex G-10 or G-25 was investigated by TLC with 0.001–1.0M NaCl as the eluent. The zone shapes and RM values of tris(1,10-phenanthroline)iron(II) and tris(2,2′-bipyridine)iron(II) were appreciably dependent on the sample and eluent concentration, while the neutral complex, tris(glycinato) cobalt(III), exhibited the round zones with constant RM values. The order of RM values was found to be tris(glycinato)cobalt(III<tris(2,2∔pyridine)iron(II)<tris-(1,10-phenanthroline)iron(II) in all systems studied, although the reverse trend was expected when assuming the chromatographic behaviour of solute compounds to be controlled by the “sieving effect”. The comparison of the behaviour on Sephadex G gels with that on CM-cellulose revealed that the predominant mechanism involved is not the sieving effect, but ion-exchange and/or hydrophobic interaction.  相似文献   

3.
Reduction of allyl halides to 1,5-hexadiene at glassy carbon electrodes was catalyzed by tris(2,2'-bipyridyl) cobalt(II) and tris(4,4'-dimethyl-2,2'-bipyridyl)cobalt(II) in aqueous solutions of 0.1 M SDS or 0.1 M CTAB. An organocobalt(I) intermediate was observed by its separate voltammetric reduction peak in each system studied. This intermediate undergoes an internal redox reaction to form 1,5-hexadiene and Co(II). Small micellar enhancements of reaction rates found for tris(2,2'-bipyridyl) cobalt(II) in 0.1 M CTAB can be attributed to reactant compartmentalization in the micelles. Observed chemical rates followed the order CTAB > SDS = acetonitrile. For tris(4,4'-dimethyl-2,2'-bi-pyridyl) Co(II) in CTAB, catalysis was limited by adsorption of the Co(I) form at the electrode. Preliminary work with bis(2,2'-bipyridyl)-(4,4'-dihexadecyl-2,2'-bipyridyl)cobalt(II) showed that its catalytic utility in 0.1 M SDS was equivalent to that of the most efficient system studied, i.e. tris(2,2'-bipyridyl)Co(II) in 0.1 M CTAB.  相似文献   

4.
Hybrid films composed of amphiphilic molecules and clay particles were constructed by the modified Langmuir-Blodgett (LB) method. Clays used were sodium montmorillonite (denoted as mont) and synthetic smectite containing Co(II) ions in the octahedral sites (denoted as Co). Two kinds of amphiphilic molecules were used-[Ru(dC(18)bpy)(phen)2](ClO4)2 (dC(18)bpy = 4,4'-dioctadecyl-2,2'-bipyridyl and phen = 1,10-phenanthroline) (denoted as Ru) and octadecylammonium choloride (ODAH+Cl- or denoted as ODAH). Three kinds of hybrid films (denoted as Ru-mont, Ru-Co, and ODAH-Co films) were prepared by spreading an amphiphilic molecule onto an aqueous suspension of a clay. Atomic force microscopy (AFM) analyses of the films deposited on silicon wafers indicated that closely packed films were obtained at 20 ppm for all the above three cases. Cyclic voltammetry (CV) was measured on an ITO electrode modified with a hybrid film or a monolayer film of pure Ru(II) complex salt (denoted as Ru film). The Ru(II) complexes incorporated in the Ru-mont film lost their redox activity, indicating that montmorillonite layers acted as a barrier against electron transfer. In contrast, the same complexes in the Ru-Co film were electrochemically active with the simultaneous appearance of the redox peaks due to the Co(II)/Co(III) (or Co(II)/Co(IV)) couple. The results implied that electron transfer through cobalt clay layers was possible via mediation by Co(II) ions in a clay sheet. For an aqueous solution containing nitrite ions (NO2-) at pH 3.0, a large catalytic oxidation current was observed for both the electrodes modified with the Ru-mont and Ru-Co films. The results were interpreted in terms of the mechanisms that the charge separation of an incorporated Ru(II) complex took place to produce a pair of a Ru(III) complex and an electron and that the generated Ru(III) complex was reduced by a nitrite ion before it recombined with the electron.  相似文献   

5.
The behavior of light-emitting electrochemical cells (LEC) based on solid films ( approximately 100 nm) of tris(2,2'-bipyridine)ruthenium(II) between an ITO anode and a Ga-In cathode was investigated. The response times were strongly influenced by the nature of the counterion: small anions (BF(4)(-) and ClO(4)(-)) led to relatively fast transients, while large anions (PF(6)(-), AsF(6)(-)) produced a slow time-response. From comparative experiments of cells prepared and tested in a glovebox to those in ambient, mobility of the anions in these films appears to be related to the presence of traces of water from atmospheric moisture. An electrochemical model is proposed to describe the behavior of these LECs. The simulation results agreed well with experimental transients of current and light emission as a function of time and show that the charge injection is asymmetric at the two electrodes. At a small bias, electrons are the major carriers, while for a larger bias the conduction becomes bipolar.  相似文献   

6.
We have developed and optimized a well-controlled and refined methodology for the synthesis of substituted π-conjugated 4,4'-styryl-2,2'-bipyridine ligands and also adapted the tris(heteroleptic) synthetic approach developed by Mann and co-workers to produce two new representative Ru(II)-based complexes bearing the metal oxide surface-anchoring precursor 4,4'-bis[E-(p-methylcarboxy-styryl)]-2,2'-bipyridine. The two targeted Ru(II) complexes, (4,4'-dimethyl-2,2'-bipyridine)(4,4'-di-tert-butyl-2,2'-bipyridine)(4,4'-bis[E-(p-methylcarboxy-styryl)]-2,2'-bipyridine) ruthenium(II) hexafluorophosphate, [Ru(dmbpy)(dtbbpy)(p-COOMe-styryl-bpy)](PF(6))(2) (1) and (4,4'-dimethyl-2,2'-bipyridine)(4,4'-dinonyl-2,2'-bipyridine)(4,4'-bis[E-(p-methylcarboxy-styryl)]-2,2'-bipyridine) ruthenium(II) hexafluorophosphate, [Ru(dmbpy)(dnbpy)(p-COOMe-styryl-bpy)](PF(6))(2) (2) were obtained as analytically pure compounds in high overall yields (>50% after 5 steps) and were isolated without significant purification effort. In these tris(heteroleptic) molecules, NMR-based structural characterization became nontrivial as the coordinated ligand sets each sense profoundly distinct magnetic environments greatly complicating traditional 1D spectra. However, rational two-dimensional approaches based on both homo- and heteronuclear couplings were readily applied to these structures producing quite definitive analytical characterization and the associated methodology is described in detail. Preliminary photoluminescence and photochemical characterization of 1 and 2 strongly suggests that both molecules are energetically and kinetically suitable to serve as sensitizers in energy-relevant applications.  相似文献   

7.
The factors affecting the operating life of the light-emitting electrochemical cells (LECs) based on films of tris(2,2'-bipyridine)ruthenium(II) both in sandwich (using an ITO anode and a Ga:Sn cathode) and planar (using interdigitated electrode arrays (IDAs)) configurations were investigated. Stability of these devices is greatly improved when they are produced and operated under drybox conditions. The proposed mechanism of the LEC degradation involves formation of a quencher in a small fraction of tris(2,2'-bipyridine)ruthenium(II) film adjacent to the cathode, where light generation occurs, as follows from the observed electroluminescence profile in the LECs constructed on IDAs, showing that the charge injection in such devices is highly asymmetric, favoring hole injection. Bis(2,2'-bipyridine)diaquoruthenium(II) is presumed to be the quencher responsible for the device degradation. A microscopic study of photo- and electroluminescence profiles of planar light-emitting electrochemical cells was shown as a useful approach for studies of charge carrier injection into organic films.  相似文献   

8.
Substitution reaction with ethylenediamine of coordinated glycinate ligand in bis(ethylenediamine)-glycinatocobalt(III) complex has been studied in the presence of photo-excited tris(2,2′-bipyridine)ruthenium(II) complex in alkaline aqueous solution (buffered around pH 12) containing 1.0M chloride ion at 25°C. VIS absorption and CD spectra were used for the racemate and the optically active isomers of the Co(III) complexes, respectively. The reaction was catalyzed by the excited Ru(II) complex to give tris(ethylenediamine)cobalt(III) complex. Mechanism of the ligand-substitution reaction and role of the excited Ru(II) complex were discussed.  相似文献   

9.
The adsorption of tris(2,2'-bipyridine)ruthenium(II) ([Ru(bpy)(3)]2+) complex cation into modified mesoporous silicas was investigated. In order to immobilize [Ru(bpy)(3)]2+, the mesopore surface was modified with sulfonic acid groups by the reactions between MCM-41 and phenethyl(dichloro)methylsilane and the subsequent sulfonation of the attached phenethyl groups with chlorosulfonic acid. The modified mesoporous silicas effectively adsorbed [Ru(bpy)(3)]2+ from ethanol solution. It was thought that the effective adsorption was the cause of the cooperative effects of the electrostatic interactions between [Ru(bpy)(3)]2+ cation and sulfonic acid group and the interactions between the phenyl rings on the mesopore surface and the bipyridine rings of the complex. The variation of the position and the intensity of the luminescence of [Ru(bpy)(3)]2+ suggested that the average distance between the adjacent [Ru(bpy)(3)]2+ changed with the loading amounts.  相似文献   

10.
The photoisomerization properties of tris(bipyridine)cobalt complexes containing six or three azobenzene moieties, namely, [Co(II)(dmAB)3](BF4)2 [dmAB = 4,4'-bis[3'-(4'-tolylazo)phenyl]-2,2'-bipyridine], [Co(III)(dmAB)3](BF4)3, [Co(II)(mAB)3](BF4)2 [mAB = 4-[3' '-(4' '-tolylazo)phenyl]-2,2'-bipyridine], and [Co(III)(dmAB)3](BF4)3, derived from the effect of gathering azobenzenes in one molecule and the effect of the cobalt(II) or cobalt(III) ion were investigated using UV-vis absorption spectroscopy, femtosecond transient spectroscopy, and 1H NMR spectroscopy. In the photostationary state of these four complexes, nearly 50% of the trans-azobenzene moieties of the Co(II) complexes were converted to the cis isomer, and nearly 10% of the trans-azobenzene moieties of the Co(III) complexes isomerized to the cis isomer, implying that the cis isomer ratio in the photostationary state upon irradiation at 365 nm is controlled not by the number of azobenzene moieties in one molecule but rather by the oxidation state of the cobalt ions. The femtosecond transient absorption spectra of the ligands and the complexes suggested that the photoexcited states of the azobenzene moieties in the Co(III) complexes were strongly deactivated by electron transfer from the azobenzene moiety to the cobalt center to form an azobenzene radical cation and a Co(II) center. The cooperation among the photochemical structural changes of six azobenzene moieties in [Co(II)(dmAB)3](BF4)2 was investigated with 1H NMR spectroscopy. The time-course change in the 1H NMR signals of the methyl protons indicated that each azobenzene moiety in [Co(II)(dmAB)3](BF4)2 isomerized to a cis isomer with a random probability of 50% and without interactions among the azobenzene moieties.  相似文献   

11.
The stepwise synthesis of several novel Ru(tris(pp)) complexes (pp = 4,4'-disubstituted-2,2'-bipyridine; substituent = H, Me, chiral ester, or chiral amide) is described, where the pp ligands may be the same, or different, in each complex. All of the complexes detailed have been resolved into their pure delta- and lambda-enantiomers or diastereomers. The complexes, which are prepared starting from RuCl3, contain novel ligand architectures, with a range of chiral esters and amides attached to the 4,4'-positions of the bpy ligands. It was postulated that these chiral groups would be capable of inducing chirality at the metal center, but our investigations have shown this not to be the case, and in all reactions completely racemic products were formed. Resolution by chiral HPLC, and the subsequent characterization of the products through NMR, UV-vis, and circular dichroism (CD) spectroscopy, has been carried out; the characteristics of the CD spectra have been discussed with respect to the electron-donating/ withdrawing ability of the groups at the 4,4'-positions. The X-ray crystal structure of the optically pure complex lambda-[Ru(dmbpy)2(4,4'-bis((R)-(+)-alpha-phenylethylamido)-2,2'-bipyridine)] x 2PF6 x 2CHCl3 was obtained and solved using direct methods. This result, in conjunction with the CD spectra, enabled the complete and unambiguous assignment of the stereocenters of all of the novel Ru(tris(bpy)) complexes prepared in this investigation.  相似文献   

12.
Two new bithiazole derivatives, 2,2'-bis(3,6,9-triazanonyl)- and 2,2'-bis(3,7,11-triazaundecyl)-4,4'-bithiazoles (3a, b), were readily synthesized in six steps using the corresponding dialkylenetriamine as starting materials. Under physiological conditions, 5.0 microM 3a exhibited significant DNA cleavage activity in the presence of Co(II), whereas even at 50 micriM, 3b exhibited no DNA cleavage activity. Furthermore, it was demonstrated that 3a forms a 1 : 2 complex with Co(II) ions, whereas 3b does not. These conclusions were based on measurements of stoichiometries of the bithiazole-cobalt complexes obtained by the Job continuous variation method. In contrast, 3a, which contains diethylenetriamine moieties, showed decreased affinity for Calf Thymus (CT) DNA compared with that of 3b, which contains dipropylenetriamine moieties. These findings indicate that the structure of the two aminoalkyl side chains attached at the 2- and 2'-positions of the 4,4'-bithiazole ring significantly influence the formation of cobalt complexes, and affects the compound's ability to cleave DNA as well as its affinity for double-stranded DNA.  相似文献   

13.
Dye-sensitized solar cells (DSC) were prepared from nanoporous TiO(2) electrodes with two different cobalt complex redox couples, propylene-1,2-bis(o-iminobenzylideneaminato)cobalt(II) {Co(II)(abpn)} and tris(4,4'-di-tert-buthyl-2,2'-bipyridine)cobalt(II) diperchlorate {Co(II)(dtb-bpy)(3)(ClO(4))(2)}. The performances of the DSCs were examined with varying the concentrations of the redox couples and Li cations in methoxyacetonitrile. Under 1 sun conditions, short-circuit currents (J(sc)) increased with the increase of the redox couple concentration, and the maximum J(sc) was found at the Li(+) concentration of 100 mM. To rationalize the observed trends of J(sc), electron diffusion coefficients and lifetimes in the DSCs were measured. Electron diffusion coefficients in the DSCs using cobalt complexes were comparable to the previously reported values of nanoporous TiO(2). Electron lifetime was independent of the concentration of the redox couples when the concentration ratio of Co(II)(L) and Co(III)(L) was fixed. With the increase of Li(+) concentration, the electron lifetime increased. These results were interpreted as due to their slow charge-transfer kinetics and the cationic nature of Co complex redox couples, in contrast to the anionic redox couple of I(-)/I(3)(-). The increase of the lifetimes with Li(+) was interpreted with the decrease of the local concentration of Co(III) near the surface of TiO(2). The addition of 4-tert-butylpyridine (tBP) with the presence of Li(+) increased J(sc) significantly. The observed increase of the electron lifetime by tBP could not explain the large increase of J(sc), implying that tBP facilitates the charge transfer from Co(II)(L) to dye cation, with the association of the change of the reorganization energy between Co(II) and Co(III).  相似文献   

14.
Bruce D  McCall J  Richter MM 《The Analyst》2002,127(1):125-128
The effects of electron withdrawing and electron donating groups on the electrochemiluminescent (ECL) properties of tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy)3(2+) where bpy = 2,2'-pyridine) are reported. The electrochemistry, photophysics and ECL of (bpy)2Ru(DC-bpy)2+, and (bpy)2Ru(DM-bpy)2+ (DC = 4,4'-dicarboxy-2,2'-bipyridine; DM = 4,4'-dimethyl-2,2'-bipyridine) have been studied relative to Ru(bpy)3(2+) in 50:50 (v/v) acetonitrile(CH3CN):H2O (0.1 M KH2PO4), and aqueous solutions. Furthermore, the effects of Triton X-100 (polyethylene glycol tert-octylphenyl ether) on the electrochemical, spectroscopic and ECL properties of these compounds are reported. The anodic oxidation of Ru(bpy)3(2+), (bpy)2Ru(DC-bpy)2+, and (bpy)2Ru(DM-bpy)2+ produces ECL in the presence of tri-n-propylamine (TPrA) in all solvent systems. ECL efficiencies (phi(ecl), photons produced per redox event) of 0.73 and 0.84 for (bpy)2Ru(DC-bpy)2+, and (bpy)2Ru(DM-bpy)2+ were obtained in aqueous buffered solution, using Ru(bpy)3(2+) as a relative standard (phi(ecl) = 1.0). Addition of 0.4 mM Triton X-100 results in a greater than 2-fold increase in ECL efficiences (i.e., 3.8, 2.4 and 2.3 for Ru(bpy)3(2+), (bpy)2Ru(DC-bpy)2+, and (bpy)2Ru(DM-bpy)2+, respectively) using aqueous Ru(bpy)3(2+) containing no surfactant as standard (phi(ecl) = 1.0). ECL efficiencies of 27.4, 16.5 and 26.1 were found in 50:50 (v/v) CH3CN:H2O (0.1 M KH2PO4) for Ru(bpy)3(2+), (bpy)2Ru(DC-bpy)2+, and (bpy)2Ru(DM-bpy)2+, respectively, using aqueous Ru(bpy)3(2+) containing no surfactant as standard (phi(ecl) = 1.0). Detailed studies support adsorption of surfactant on the electrode surface, thus facilitating TPrA and ruthenium oxidation.  相似文献   

15.
In this study, cyclic and differential pulse voltammetric methods were used to investigate the electrochemical behavior of diazinon at carbon paste electrode modified with tris(ethylenediamine) cobalt(II) iodide ([Co(en)3]I2). Cobalt complex showed an anodic peak at 620 mV (vs. Ag/AgCl, in KNO3 0.1 M as supporting electrolyte) at carbon paste modified electrode. In the presence of diazinon, anodic peak intensity increased with increasing concentration of diazinon that confirmed electrocatalytic activity of cobalt complex for oxidation of diazinon (EC’ mechanism). Under optimized conditions, a linear calibration curve for diazinon was obtained in the range from 0.05 to 27 mg/L with detection limit 0.0075 mg/L (3S b /m). Applications of the modified electrode to the determination of diazinon in different water samples were also tested. The results showed a very good precision (RSD < 0.04%) and very stable voltammetric response towards diazinon.  相似文献   

16.
Anodic oxidation of oligodeoxyribonucleotide in an alkaline aqueous medium containing tris(2,2'-bipyridine)ruthenium(II) (Ru(bpy)3(2+)) was shown to cause luminescence around +1.3 V (vs. Ag/AgCl) with a maximal intensity at approximately 600 nm, possibly originating from Ru(bpy)3(2+) in the d-pi* triplet state. A pivotal initial stage in the light production path was postulated to be the anodic oxidation of 2-deoxyribose residue. This reaction seems to be available for the determination of sub-micromol dm(-3) levels of oligodeoxyribonucleotide.  相似文献   

17.
Emetine dithiocarbamate metal complex, which is prepared from emetine, carbon disulfide, and metal (II), was found to indicate a large chemiluminescence intensity on the electrogenerated chemiluminescence of tris(2,2'-bipyridine)ruthenium(II). Liquid chromatography equipped with the chemiluminescence detection was developed for analyzing trace metal ions by use of the metal complex formation. The mixture of the Cu(II) and Co(II) complexes as a model sample was injected into the LC system. The two metal complexes and an excess emetine were successfully separated. The Cu(II) and Co(II) complexes were determined over the range 1-300 nM (the detection limit of 650 fg) and 30-5000 nM (the detection limit of 17 pg), respectively.  相似文献   

18.
A novel disulphide derivatised deuteroporphyrin 2,7,12,18-tetramethyl-13,17-(propionylaminoethyldithioethyl amino-formy-lethyl) -29,34-bis-(methoxyformyl)porphyrin(PDTEP,3) and its cobalt(Ⅱ) complex(Co(II)PDTEP,4) were conveniently synthesized. The disulphide functional group of 4 allowed its stable immobilization on gold electrodes.The modified electrode was characterized by IR and confirmed electrochemically and showed good stability and catalytic activity toward the electro-catalyzed reduction of hydrogen peroxide.  相似文献   

19.
A new tris(2,2′-bipyridine)ruthenium(II) complex substituted with two fullerene subunits has been prepared starting from a fullerene carboxylic acid derivative and a 2,2′-bipyridine ligand bearing two alcohol functions.  相似文献   

20.
The redox reaction between cobalt(II) and gold(III) chloride in the presence of 1.10-phenanthroline or 2,2'-bipyridine was studied, and a titration of the cobalt(II) complex with a gold(III) chloride solution was developed. A 4-fold amount of 1,10-phenanthroline or 2,2'-bipyridine was necessary for rapid quantitative reaction; the permissible pH range was 1.5–5. The oxidation of the cobalt(II) complex proceeds rapidly at 40–50°C, and a direct potentiometric titration was possible. The following maximum errors were obtained: 3.3% for 0.2–1.0 mg Co, 2.0% for 1–5 mg Co, and 0.70% for 10–40 mg Co. The following ions did not interfere: Ni(II), Zn(II), Pb(II), Cd(II), Mn(II), Fe(II), Cr(III), Al(III), Th(IV), Se(IV), Ti(IV), U(VI), Mo(VI), SO2-4 and PO3-4. Even small quantities of silver(I), copper(II), palladium(II), mercury(II)and iron(III) interfered. The method was applied to the determination of high cobalt contents in high-temperature nickel-base alloys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号