首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pt-based catalysts cannot be used permanently for the diesel after-treatment system because the catalytic activity is decreased due to coarsening of Pt particles at high temperature of the exhaust gas. In this study, to prevent Pt-based catalyst from deactivation, Nd was added to the Pt/SiO2 catalyst, and the effect of the Nd addition on the catalytic activity was investigated. The Pt/SiO2 catalyst showed a high catalytic activity for the oxidation of NO but was severely deactivated after the fast thermal aging process. Pt crystallite size was increased and some Pt particles were buried in the SiO2 pore during the fast thermal aging process, which led to the decrease of catalytic activity. Nd-added Pt/SiO2 catalyst showed lower activity than Pt/SiO2 catalyst, but Pt–Nd/SiO2 catalyst maintained its catalytic activity after fast thermal aging process. It can be postulated that a stable Nd silicate, on which Pt particle is placed, protects SiO2 pores from destruction and so the number of the catalytically active sites remains nearly unchanged. As a result the Pt–Nd/SiO2 catalyst maintained its catalytic activity after fast thermal aging process.  相似文献   

2.
High activity and high formation selectivity for aromatics in the dehydrocondensation reaction of methane were realized only on selected catalysts. The requisites of a metal and a zeolite support as the selected catalyst were described. However, the catalytic activity steadily declined even on the selected catalysts with time on stream because of coke accumulation. A stable catalytic activity was obtained when CO2 or CO was added into methane feed due to effective removal of coke from the catalyst surface by CO or CO2. The route from methane to aromatics and the formation process of active phase of catalyst were discussed.  相似文献   

3.
High activity and high formation selectivity for aromatics in the dehydrocondensation reaction of methane were realized only on selected catalysts. The requisites of a metal and a zeolite support as the selected catalyst were described. However, the catalytic activity steadily declined even on the selected catalysts with time on stream because of coke accumulation. A stable catalytic activity was obtained when CO2 or CO was added into methane feed due to effective removal of coke from the catalyst surface by CO or CO2. The route from methane to aromatics and the formation process of active phase of catalyst were discussed.  相似文献   

4.
In this work, a facile hydrothermal route was used to prepare nano‐sized MoS2 catalyst. The effect of citric acid during the MoS2 preparation process on the catalytic activity of sulfur‐resistant CO methanation was investigated. It was found that citric acid played an adverse role on the catalytic activity of MoS2 toward sulfur‐resistant CO methanation. However, CO methanation performance turned out to be better when NH2OH?HCl as a reductant was removed during the catalyst preparation process. The X‐ray diffraction (XRD) and infrared spectroscopy (IR) were performed to discuss the possible mechanism for the effect of citric acid towards CO methanation performance.  相似文献   

5.
The catalytic wet oxidation process is the most attractive process for small-scale hydrogen sulfide (H2S) removal from natural gas. The catalytic wet oxidation process is anticipated to be cost effective and simple so that it can be used for treating sour gases containing small amounts of H2S and can be easily operated even in isolated sites. The development of effective catalyst is the key technology in the wet catalytic oxidation of H2S. The scale of operation for the process has to be flexible so its use will not be limited by the flow rates of the gas to be treated. The heterogeneous catalytic wet oxidation of H2S has been attempted on activated carbons, but the H2S removal capacity still shows the low removal efficiency. The catalytic wet oxidation of H2S was studied over Fe/MgO for an effective removal of H2S. In order to develop a sulfur removal technology, one has to know what surface species of catalyst are the most active. This article discusses the following systematic studies: (i) the catalytic preparation to disperse Fe metal well on MgO support for enhancing H2S removal capacity, (ii) the effect of the catalytic morphology on the activity of Fe/MgO for the H2S wet oxidation, (iii) the influence of precursor and support on the activity of Fe/MgO for catalytic wet oxidation of H2S to sulfur.  相似文献   

6.
The role of various components of a multiphase oxide catalytic system in the partial oxidation of propylene to acrolein is investigated. Catalytic activity is studied for the Co6–8Mo12Fe2–3Bi0.5–0.75Sb0.1K0.1Ox catalyst, which is taken to be the reference, and for catalysts in which the amount of some component is progressively reduced down to zero. The results obtained provide insights into the role of the components of the catalyst.CoMoO4 forms the structural framework of the catalyst. Iron molybdate can be stabilized on CoMoO4 as β-phase. As its content is increased, the catalyst gains activity but its selectivity declines. Bismuth molybdate is responsible for the selectivity of the process. When present in small amounts, MoO3 raises the selectivity, binds free oxides, and converts reduced molybdates into their oxidized forms. Excess molybdenum trioxide causes a dramatic fall in the catalytic activity. Potassium and antimony decrease the catalytic activity, but even small amounts of these elements raise the selectivity of the catalyst. Chromium can substitute for iron atoms in the multicomponent catalyst. Ni, Mn, and Mg substitute for Fe in iron molybdate to decrease the catalytic activity.__________Translated from Kinetika i Kataliz, Vol. 46, No. 4, 2005, pp. 569–579.Original Russian Text Copyright © 2005 by Udalova, Shashkin, Shibanova, Krylov.  相似文献   

7.
We investigated high catalytic activity of Ni/HZSM-5 catalysts synthesized by the impregna-tion method, which was successfully applied for low-temperature steam reforming of bio-oil. The influences of the catalyst composition, reforming temperature and the molar ratio of steam to carbon fed on the stream reforming process of bio-oil over the Ni/HZSM-5 catalysts were investigated in the reforming reactor. The promoting effects of current passing through the catalyst on the bio-oil reforming were also studied using the electrochemical catalytic re-forming approach. By comparing Ni/HZSM-5 with commonly used Ni/Al2O3 catalysts, the Ni20/ZSM catalyst with Ni-loading content of about 20% on the HZSM-5 support showed the highest catalytic activity. Even at 450 oC, the hydrogen yield of about 90% with a near complete conversion of bio-oil was obtained using the Ni20/ZSM catalyst. It was found that the performance of the bio-oil reforming was remarkably enhanced by the HZSM-5 supporter and the current through the catalyst. The features of the Ni/HZSM-5 catalysts were also investigated via X-ray diffraction, inductively coupled plasma and atomic emission spectroscopy, hydrogen temperature-programmed reduction, and Brunauer-Emmett-Teller methods.  相似文献   

8.
The effects of calcination temperature and feedstock pretreatment on the catalytic performance of Co/γ‐Al2O3 catalysts were studied for partial oxidation of methane (POM) to synthesis gas, with emphasis on the role of feedstock pretreatment. The physicochemical properties of the catalysts were characterized by N2 adsorption, X‐ray diffraction (XRD), transmission electron microscopy (TEM), H2 temperature‐programmed reduction (H2‐TPR), and Raman spectroscopy. The results showed that the pretreatment of the catalyst by reaction gas significantly improved the catalytic activity and stability for the POM reaction. On the other hand, the effect of calcination temperature was less significant. Although the initial activity was increased by an increased calcination temperature, the catalyst without the feedstock pretreatment suffered a rapid deactivation. The reaction‐atmosphere pretreatment was revealed as a process that mainly modified the surface structure of the catalyst. In that process, the formation of a CoAl2O4‐like compound led to high Co metal dispersion after reduction, and the transformation of the carrier into α‐Al2O3 occurred over the catalyst surface. Both the high dispersion of cobalt and the presence of α‐Al2O3 surface phase were assumed as the important factors resulting in an excellent catalytic performance in terms of high activity and high stability.  相似文献   

9.
A new thermal‐latent hydrosilylation catalyst consisting of H2PtCl6 and polymers bearing amine moieties is described. In the presence of aminated polymers, the catalytic activity of H2PtCl6 was suppressed remarkably in the model reaction of triethylsilane with trimethylvinylsilane, whose effect was remarkably higher in comparison with monomeric amines. On heating, however, sufficient catalytic activity was attained where the activation temperature was dependent on the amine content in the polymer and polymer structure. Furthermore, this catalyst system was applied to the curing process of silicone resin to confirm the thermal‐latent character of the catalyst. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 804–809, 2000  相似文献   

10.
Alloying degree, particle size and the level of dispersion are the key structural parameters of Pt-Ru/C catalyst in fuel cells. Solvent(s) used in the preparation process can affect the particle size and alloying degree of the object substance, which lead to a great positive impact on its properties. In this work, three types of solvents and their mixtures were used in preparation of the Pt-Ru/C catalysts by chemical reduction of metal precursors with sodium borohydride at room temperature. The structure of the catalysts was characterized by X-ray diffraction (XRD) and Transmission electron microscopy (TEM). The catalytic activity and stability for methanol electro-oxidation were studied by Cyclic Voltammetry (CV) and Chronoamperometry (CA). Pt-Ru/C catalyst prepared in H2O or binary solvents of H2O and isopropanol had large particle size and low alloying degree leading to low catalytic activity and less stability in methanol electro-oxidation. When tetrahydrofuran was added to the above solvent systems, Pt-Ru/C catalyst prepared had smaller particle size and higher alloying degree which resulted in better catalytic activity, lower onset and peak potentials, compared with the above catalysts. Moreover, the catalyst prepared in ternary solvents of isopropanol, water and tetrahydrofuran had the smallest particle size, and the high alloying degree and the dispersion kept unchanged. Therefore, this kind of catalyst showed the highest catalytic activity and good stability for methanol electro-oxidation.  相似文献   

11.
The easy synthesis of graphene oxide (GO)-supported manganese dioxide (MnO2) nanoparticles as a stable heterogeneous nanocatalyst (MnO2@GO) is described. This catalyst was investigated in the synthesis of 1,2,4-oxadiazoles from amidoximes and aldehydes via a cyclization and oxidation process. The nanocomposite was prepared and characterized using various techniques. The catalytic application of the nanocomposite was examined in the reaction of a variety of aldehydes with aliphatic and aromatic amidoximes. The stable and robust catalyst was recycled for seven consecutive runs without a significant decrease in the catalytic activity.  相似文献   

12.
SBA-15负载Pd催化剂的制备及其在Heck反应中的应用研究   总被引:2,自引:0,他引:2  
利用水热反应制备了表面离子液体功能化的SBA-15介孔材料,在丙酮溶液中与氯化钯反应,然后使用水合肼在乙醇中还原.测试了这种催化剂在Mizoroki-Heck反应中的催化活性.与直接负载在SBA-15上的钯催化剂相比,这种表面修饰的介孔SBA-15负载催化剂表现出更高的催化活性、可回收性和反应稳定性.氮气吸脱附实验和小角XRD衍射实验表明,在合成中,材料的介孔性能并没有被破坏.透视电镜也表征了该材料的表面形貌.最后,Mizoroki-Heck反应表明该催化剂具有很高的催化活性,且循环五次后,其催化活性降低并不明显.  相似文献   

13.
Sumitomo Chemical has developed a low energy consuming and green process for the catalytic oxidation of HCl to Cl2, especially when compared with the electrolysis process. The RuO2/rutile-TiO2 catalyst has high catalytic activity and thermal stability due to ultra-fine RuO2 crystallites that cover the surface of the TiO2 primary particles with strong interaction. In addition, the silica modified RuO2/rutile-TiO2 catalyst shows higher thermal stability by preventing the RuO2 sintering due to using dispersed SiO2 particles. With these catalysts, high reaction rates required for industrial applications are achieved, even at low temperatures.  相似文献   

14.
In this work, the phosphorus ylide, [PPh3CHC(O)CH2Cl], was reacted with AgNO3 to give the [Ag{C(H)PPh3C(O)CH2Cl}2]+NO3 ? as the product. Then, it was supported on the modified montmorillonite nanoclay to prepare a new catalyst for the reduction reaction. The structure and morphology of the nanoclay catalyst were characterized by FT-IR, X-ray powder diffraction, scanning electron microscopy, energy-dispersive X-ray analysis and transmission electron microscopy techniques; also, the content of silver was obtained by inductively coupled plasma analyzer. This composition was exploited to study its catalytic activity in the reduction in aromatic nitro compounds; it displayed the high catalytic activity. Factors such as catalyst amount, solvent, temperature and reaction time were all systematically investigated to elucidate their effects on the yield of catalytic reduction in nitroarenes. This catalytic system exhibited high activity toward aromatic nitro compounds under mild conditions. The catalyst was reused five times without any significant loss in its catalytic activity.  相似文献   

15.
Uniform carbon nanospheres (UCS) with well‐controlled nano‐morphologies were fabricated by hydrothermal carbonization of sucrose in the presence of kayexalate. Highly dispersed and ultrafine palladium nanoparticles were supported on the UCS through a facile co‐reduction process with NaBH4 as reducing agent. The obtained Pd@UCS exhibited efficient catalytic activity for the Suzuki coupling reaction. Moreover, the as‐prepared catalyst could be recycled and reused at least five times without significant loss of its catalytic activity.  相似文献   

16.
We reported a bifunctional material, Cr-salen implanted conjugated microporous polymer (Cr-CMP), which is able to capture excellent CO2 amounts and has a remarkable catalytic activity towards the cycloaddition reaction of CO2 to epoxides forming cyclic carbonates at mild conditions without additional solvents. This heterogeneous Cr-CMP catalyst has a superior catalytic activity to its related homogeneous catalyst and can be reused more than ten times without a significant decrease in catalytic activity.  相似文献   

17.
An efficient heterogeneous Pd catalytic system has been developed, based on immobilization of Pd nanoparticles (PNPs) on a silica-bonded N-propylpiperazine (SBNPP) substrate. The SBNPP substrate effectively stabilizes the PNPs and improves their stability against aggregation. The catalytic activity of this catalyst was investigated in the cyanation of aryl halides with K4[Fe(CN)6 ] as the cyanide source. The catalyst could be recycled several times without appreciable loss of catalytic activity.  相似文献   

18.
Chemical upcycling that catalyzes waste plastics back to high-purity chemicals holds great promise in end-of-life plastics valorization. One of the main challenges in this process is the thermodynamic limitations imposed by the high intrinsic entropy of polymer chains, which makes their adsorption on catalysts unfavorable and the transition state unstable. Here, we overcome this challenge by inducing the catalytic reaction inside mesoporous channels, which possess a strong confined ability to polymer chains, allowing for stabilization of the transition state. This approach involves the synthesis of p-Ru/SBA catalysts, in which Ru nanoparticles are uniformly distributed within the channels of an SBA-15 support, using a precise impregnation method. The unique design of the p-Ru/SBA catalyst has demonstrated significant improvements in catalytic performance for the conversion of polyethylene into high-value liquid fuels, particularly diesel. The catalyst achieved a high solid conversion rate of 1106 g ⋅ gRu−1 ⋅ h−1 at 230 °C. Comparatively, this catalytic activity is 4.9 times higher than that of a control catalyst, Ru/SiO2, and 14.0 times higher than that of a commercial catalyst, Ru/C, at 240 °C. This remarkable catalytic activity opens up immense opportunities for the chemical upcycling of waste plastics.  相似文献   

19.
A new catalytic system was developed for the direct catalytic asymmetric aldol reaction of thioamides. The new lithium-free Cu catalyst (second-generation catalyst) exhibited enhanced catalytic efficiency over the previously developed catalyst comprising [Cu(CH3CN)4]PF6/Ph-BPE/LiOAr (first-generation catalyst), which required a tedious catalyst preparation process. In the reaction with the second-generation catalyst, the intermediate Cu-aldolate functioned as a Brønsted base to generate thioamide enolate, efficiently driving the catalytic cycle. The present aldol methodology culminated in a concise asymmetric synthesis of atorvastatin (Lipitor®: atorvastatin calcium), a widely prescribed HMG-CoA reductase inhibitor for lowering low-density lipoprotein cholesterol.  相似文献   

20.
A new process of low-temperature methanol synthesis from CO/CO2/H2 based on dual-catalysis has been developed. Some alcohols, especially 2-alcohol, were found to have high catalytic promoting effect on the synthesis of methanol from CO hydrogenation. At 443 K and 5 MPa, the synthesis of methanol could process high effectively, resulting from the synergic catalysis of Cu/ZnO solid catalyst and 2-alcohol solvent catalyst. The primary results showed that when 2-butanol was used as reaction solvent, the one-pass average yield and the selectivity of methanol, in 40 h continuous reaction at temperature as low as 443 K and 5 MPa, were high up to 46.51% and 98.94% respectively. The catalytic activity was stable and the reaction temperature was 80 K or so lower than that in current industry synthesis process. This new process hopefully will become a practical method for methanol synthesis at low temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号