首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
At various levels of theory, singlet and triplet potential energy surfaces (PESs) of Si2CO, which has been studied using matrix isolation infrared spectroscopy, are investigated in detail. A total of 30 isomers and 38 interconversion transition states are obtained at the B3LYP/6‐311G(d) level. At the higher CCSD(T)/6‐311+G(2d)//QCISD/6‐311G(2d)+ZPVE level, the global minimum 11 (0.0 kcal/mol) corresponds to a three‐membered ring singlet O‐cCSiSi (1A′). On the singlet PES, the species 12 (0.2 kcal/mol) is a bent SiCSiO structure with a 1A′ electronic state, followed by a three‐membered ring isomer Si‐cCSiO (1A′) 13 (23.1 kcal/mol) and a linear SiCOSi 14 (1Σ+) (38.6 kcal/mol). The isomers 11, 12, 13 , and 14 possess not only high thermodynamic stabilities, but also high kinetic stabilities. On the triplet PES, two isomers 31 (3B2) (18.8 kcal/mol) and 37 (3A″) (23.3 kcal/mol) also have high thermodynamic and kinetic stabilities. The bonding natures of the relevant species are analyzed. The similarities and differences between C3O, C3S, SiC2O, and SiC2S are discussed. The present results are also expected to be useful for understanding the initial growing step of the CO‐doped Si vaporization processes. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

2.
Density functional theory (DFT) calculations have been used to study the isomerization process in the NC3P system. At the DFT/B3LYP/6-311G(d) level, 28 triplet and 28 singlet minima were obtained on their respective potential energy surfaces. The linear triplet 3NCCCP is the lowest-energy structure among the isomers. On the triplet PES, only linear isomers 3NCCCP, 3CNCCP, 3CCCNP, and 3CCNCP possess great kinetic and thermodynamic stabilities to exist under low-temperature conditions (such as in the dense interstellar clouds). At the same time, one chain-like and four three-membered-ring isomers on the singlet PES have been located with high kinetic and thermodynamic stabilities. Further CCSD(T)/6-311G(2df)//QCISD/6-311G(d), CCSD(T)/cc-pVTZ//DFT/B3LYP/cc-pVTZ, and CASPT2(14,12)/cc-pVQZ//CASSCF(14,12)/cc-p VQZ calculations are performed on the structures, frequencies, and energies of the relevant species. The bonding natures were analyzed and the results were compared with the analogous NC3N and NC2P molecules so as to aid their future experimental or astrophysical detection.  相似文献   

3.
The intermediates [Si,O,C,O] of the Si + CO2 reaction have been studied in detail using high level ab iniitio methods. Both singlet and triplet [Si,O,C,O] species are characterized structurally and energetically. On the singlet potential energy surface (PES), the vdw‐OSi–CO isomer and in the triplet PES, the bent‐SiOCO isomer is found to be thermodynamically as well as kinetically most stable species. All possible isomerization transition states (TS) are located on both singlet and triplet potential surfaces. On the triplet surface, the stability of the trans‐OSiCO isomer is comparable with that of the bent‐SiOCO isomer. A non‐planar cis‐SiOCO isomer is located on the triplet PES, which is predicted for the first time. Heats of formation at 0 K (ΔfH°, 0 K) for all singlet and triplet species are computed using G3B3, G3MP2, and CBS‐Q theories. The discrepancy between G3B3 and the other two methods for the heat of formation value for triplet trans‐OSiCO is discussed. The PESs for singlet as well as triplet species with their dissociation asymptotes are explored at the CCSD(T)/6‐311G(d,p)//MP2/6‐311G(d,p) level of theory. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

4.
The reaction of CH3OH with the O2 on the triplet and singlet potential energy surfaces (PES) was carried out using the B3LYP, MP2, and CCSD(T)//B3LYP theoretical approaches in connection with the 6-311++G(3df–3pd) basis set. Three pre-reactive complexes, 1C1, 1C2, and 3C1, on the singlet and triplet PES were formed between methanol and molecular oxygen. From a variety of the complexes, seven types of products are obtained, of which four types are found to be thermodynamically stable. Results reveal that there exists one intersystem crossing between triplet and singlet PES. For P4 adduct that is the main and kinetically the most favorable product, the rate constants are calculated in the temperature range of 200–1,000 K in the reliable pathway.  相似文献   

5.
李晓艳  孙政  孟令鹏  郑世钧 《化学学报》2007,65(20):2203-2210
利用量子化学从头算CASSCF方法在6-311+G (d, p)基组水平上对单线态和三线态RN (R=CH3, CH3CH2)异构化反应及RN脱氢反应的微观机理进行了理论研究. 在MP2/6-311+G (d, p)和CCSD/6-311+G (d, p)水平上进行了单点能校正. 单态和三态势能面的交叉点(ISC)的存在清楚地说明了基态反应物3RN异构化为基态产物1R'NH (R'=CH2, CH3CH)的过程. 电子密度拓扑分析显示在整个异构化过程中有两种类型的结构过渡态: 单态反应通道为T型过渡态, 三态反应通道为环状过渡态. 单线态RN脱氢反应通道中“原子-分子键”的存在说明两个H原子是以H2的形式从RN中脱去的.  相似文献   

6.
Relative stabilities and singlet–triplet energy differences are calculated for 24 C2NX azacarbenes (where X is H, F, Cl, and Br). Three skeletal arrangements are employed including azacyclopropenylidene, [(imino)methylene]carbene, and cyanocarbene. Halogens appear to alternate the electronic ground states of C2NH azacarbenes, from triplet to singlet states, at MP3/6‐311++G**, B1LYP/6‐311++G**, B3LYP/6‐311++G**, MP2/6‐311++G**, MP4(SDTQ)/6‐311++G**, QCISD(T)/6‐311++G**, CCSD(T)/6‐311++G**, CCSD(T)/cc‐pVTZ, G1, and G2 levels of theory. The aromatic characters of singlet cyclic azacyclopropenylidenes are measured using GIAO–NICS calculations. Linear correlations are found between the B3LYP/6‐311++G** calculated LUMO–HOMO energy gaps (ΔEHOMO ‐ LUMO) of the singlet carbenes versus their corresponding singlet–triplet energy separations (ΔE). Electrophilic characters are found for all singlet azacarbenes in their addition reactions to alkenes with the highest electrophilicity being exhibited for X = F. © 2008 Wiley Periodicals, Inc. Heteroatom Chem 19:377–388, 2008; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20442  相似文献   

7.
 The structures and isomerization pathways of various HC2P isomers in both singlet and triplet states are investigated at the B3LYP/6-311G(d,p), QCISD/6-311G(d,p) (for isomers only) and single-point CCSD(T)/6-311G(d,p)//B3LYP/6-311G(d,p) levels. At the CCSD(T)/6-311G(d,p)//B3LYP/6-311G(d,p) level, the lowest-lying isomer is a linear HCCP structure 3 1 in the 3 state. The second low-lying isomer has a CPC ring with exocyclic CH bonding 1 5 in a singlet state at 10.5 kcal/mol. The following third and fourth low-lying isomers are a singlet bent HCCP structure 1 1 at 20.9 kcal/mol and a bent singlet HPCC structure 1 3 at 35.8 kcal/mol, respectively. Investigation of the HC2P potential-energy surface indicates that in addition to the experimentally known isomer 3 1, the other isomers 1 1, 1 3 and 1 5 also have considerable kinetic stability and may thus be observable. However, the singlet and triplet bent isomers HCPC 1 2 and 3 2 as well as the triplet bent isomer HPCC 3 3 are not only high-lying but are also kinetically unstable, in sharp contrast to the situation of the analogous HCNC and HNCC species that are both kinetically stable and that have been observed experimentally. Furthermore, the reactivity of various HC2P isomers towards oxygen atoms is briefly discussed. The results presented here may be useful for future identification of the completely unknown yet kinetically stable HC2P isomers 1 1, 1 3 and 1 5 either in the laboratory or in interstellar space. Received: 5 November 2000 / Accepted: 25 November 2001 / Published online: 8 April 2002  相似文献   

8.
The mechanism and thermodynamic of NH3 + O2 reaction on the singlet and triplet potential energy surfaces (PES), were carried out using the RMP2 and CCSD (T)//RMP2 theoretical approaches in connection with the 6-311++G(d, p) basis set. Three pre-reactive complexes, 1C1, 1C2, and 3C1 on the singlet and triplet PES were formed between ammonia and molecular oxygen. With variety of pre-reactive complexes, six types of products are obtained, of which two types are found to be thermodynamically stable. The mechanistic properties of all products channels are discussed. Results show that production of HONO + H2 and HN(OH)2 are the main reaction channels in thermodynamic viewpoint with the Gibbs free energy of ? = ?34.681 and ?27.153 kcal/mol, respectively. Rate constants of the title reaction over the temperature range of (200–1000 K) show kinetic products are different from thermodynamic products.  相似文献   

9.
Reaction pathways of ethylene and carbon monoxide on the singlet and triplet potential energy surfaces (PESs) have been calculated at B3LYP/6-311++G (3df, 3dp), G3B3 and CCSD(T)//B3LYP levels. Reaction mechanisms have been investigated by analysis of various structures. Suggested reaction mechanisms reveal that 3P3(CH2CHCHO) and 3P4(CH3CCHO) are thermodynamically stable adducts with the negative value in Gibbs free energies on the triplet PES. In addition, results show that one intersystem crossing exists between triplet and singlet PESs, which are obtained by scanning of the C–C bond length in 1IN3 and 3IN7 species.  相似文献   

10.
The calculations of the geometry optimizations, energies, dipole moments, vibrational spectra, rotational constants, and isomerization of doublet SiC3H species were performed using density functional theory and ab initio methods. Four types of isomers, a total of 18 minima, connected by 16 interconversion transition states, were located on the potential energy surface (PES) at the B3LYP/6-311G (d, p) level. More accurate energies were obtained at the CCSD(T)/6-311G(2df, 2p), and G3(MP2) levels. With the highest isomerization barrier, the lowest lying structure, linear A1 possesses the largest kinetic stability. Besides, the isomerization barriers of A2, A4, C2, F1, F4 and F5 are over 10 kcal/mol, and these isomers are also considered to be higher kinetically stable. Other isomers cannot be kinetically stabilized with considerably low isomerization barriers. Investigation on the bonding properties and the computations of vibrational spectra, dipole moments, and rotational constants for SiC3H isomers are helpful for understanding their structures and also valuable for their detections in the interstellar space and laboratory.  相似文献   

11.
In this article, we report our detailed mechanistic study on the reactions of cyclic-N3 with NO, NO2 at the G3B3//B3LYP/6-311+G(d) and CCSD(T)/aug-cc-pVTZ//QCISD/6-311+G(d)+ZPVE levels; the reactions of cyclic-N3 with Cl2 was studied at the G3B3//B3LYP/6-311+G(d) and CCSD(T)/aug-cc-pVTZ//QCISD/6-31+G(d)+ZPVE levels. Both of the singlet and triplet potential-energy surfaces (PESs) of cyclic-N3 + NO, cyclic-N3 + NO2 and the PES of cyclic-N3 + Cl2 have been depicted. The results indicate that on singlet PESs cyclic-N3 can undergo the barrierless addition–elimination mechanism with NO and NO2 forming the respective dominant products N2 + 1cyclic-NON and 1NNO(O) + N2. Yet the two reactions on triplet PESs are much less likely to take place under room temperature due to the high barriers. For the cyclic-N3 + Cl2 reaction, a Cl-abstraction mechanism was revealed that results in the product cyclic-N3Cl + Cl with an overall barrier as high as 14.7 kcal/mol at CCSD(T)/aug-cc-pVTZ//QCISD/6-31+G(d)+ZPVE level. So the cyclic-N3 radical could be stable against Cl2 at low temperatures in gas phase. The present results can be useful for future experimental investigation on the title reactions.  相似文献   

12.
The low-lying singlet and triplet states of H2CBe and HCBeH are examined using ab inito molecular orbital theory. In agreement with earlier results, the lowest-lying structure of H2CBe has C2v symmetry and is a triplet with one π electron (3 B1). The results presented here suggest that the lowest-energy singlet structure is the (1B1) open-shell singlet, also with C2v symmetry, at least 2.5 kcal/mol higher in energy. The singlet C2v structure with two π electrons (1A1) is 15.9 kcal/mol higher than 3B1. All of these structures are bound with respect to the ground state of methylene and the beryllium atom. In HCBeH, linear equilibrium geometries are found for the triplet (3Σ) and singlet (1Δ) states. The triplet is more stable than the singlet (1Δ) by 35.4 kcal/mol, and is only 2.9 kcal/mol higher in energy than triplet H2 CBe. Since the transition structure connecting these two triplet molecules is found to be 50.2 kcal/mol higher in energy than H2 CBe, both triplet equilibrium species might exist independently. The harmonic vibrational frequencies of all structures are also reported.  相似文献   

13.
Boron and mixed‐boron clusters have received considerable attention because of their wide applications and their essential roles in advancing chemical bonding models. Bearing the bright prospects as building blocks to form novel polymeric materials, the sulfur‐rich boron sulfides have been greatly studied. However, the knowledge of the boron‐rich boron sulfides is much rare. In this article, we report an extensive theoretical study on the structural, energetic, and stability features of a hitherto unknown septa‐atomic cluster B6S at the CCSD(T)/6‐311+G(2df)//B3LYP/6‐311+G(d) level. The local minimum isomers were obtained through our recently developed program “grid‐based comprehensive isomeric search algorithm.” The results show that the planar knife‐like isomer B5(?BS) 01 (0.0 kcal/mol) containing the ?BS moiety is the lowest energy, followed by the quasi‐planar belt‐like isomer B6(>S) 02 (6.7 kcal/mol) and the pyramid‐like isomer B6(>S) 03 (8.4 kcal/mol). Notably, the three singlet isomers all have good kinetic stability on the basis of the potential energy surface analysis. The B/S‐centered wheel‐like isomers are unfavorable in thermodynamics and kinetics. The triplet state structures generally can not compete with the singlet ones. The results are compared to the analogous and isoelectronic cluster B6O. Our work is expected to provide useful information for understanding the structures and stability of boron sulfides. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

14.
The potential energy surface (PES) for the HOBr.H(2)O complex has been investigated using second- and fourth-order M?ller-Plesset perturbation theory (MP2, MP4) and coupled cluster theory with single and doubles excitations (CCSD), and a perturbative approximation of triple excitations (CCSD-T), correlated ab initio levels of theory employing basis sets of triple zeta quality with polarization and diffuse functions up to the 6-311++G(3dp,3df ) standard Pople's basis set. Six stationary points being three minima, two first-order transition state (TS) structures and one second-order TS were located on the PES. The global minimum syn and the anti equilibrium structure are virtually degenerated [DeltaE(ele-nuc) approximately 0.3 kcal mol(-1), CCSD-T/6-311++G(3df,3pd) value], with the third minima being approximately 4 kcal mol(-1) away. IRC analysis was performed to confirm the correct connectivity of the two first-order TS structures. The CCSD-T/6-311++G(3df,3pd)//MP2/6-311G(d,p) barrier for the syn<-->anti interconversion is 0.3 kcal mol(-1), indicating that a mixture of the syn and anti forms of the HOBr.H(2)O complex is likely to exist.  相似文献   

15.
Four ground state triplet silylenes are found among 30 possible silylenic XHSi3 structures (X = H, F, Cl and Br), at seven ab initio and DFT levels including: B3LYP/6-311++G∗∗, HF/6-311++G∗∗, MP3/6-311G, MP2/6-311+G∗∗, MP4(SDTQ)/6-311++G∗∗, QCISD(T)/6-311++G∗∗ and CCSD(T)/6-311++G∗∗. The latter six methods indicate that the triplet states of 3-flouro-1,2,3-trisilapropadienylidene, 1-chloro-1,2,3-trisilapropargylene and 3-chloro-1,2,3-trisilapropargylene are energy minima. These triplets appear more stable than their corresponding singlet states which cannot even exist for showing negative force constants. Also, triplet state of 1-flouro-1,2,3-trisilapropargylene is possibly accessible for being an energy minimum, since its corresponding singlet state is not a real isomer. Some discrepancies are observed between energetic and/or structural results of DFT vs. ab initio data.  相似文献   

16.
Ab initio calculations of the potential energy surface (PES) for the Br+O3 reaction have been performed using the MP2, CCSD(T), and QCISD(T) methods with 6‐31G(d), 6‐311G(d), and 6‐311+G(3df). The reaction begins with a transition state (TS) when the Br atom attacks a terminal oxygen of ozone, producing an intermediate, the bromine trioxide (M), which immediately dissociates to BrO+O2. The geometry optimizations of the reactants, products, and intermediate and transition states are carried out at the MP2/6‐31G(d) level. The reaction potential barrier is 3.09 kcal/mol at the CCSD(T)/6‐311+G(3df)//MP2 level, which shows that the bromine atom trends intensively to react with the ozone. The comparison of the Br+O3 reaction with the F+O3 and Cl+O3 reactions indicates that the reactions of ozone with the halogen atoms have the similar reaction mechanism. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

17.
Various levels of calculations are carried out~for exploring the potential energy surface (PES) of triplet SiC3O, a molecule of potential interest in interstellar chemistry. A total of 38 isomers are located on the PES including chain-like, cyclic and cage-like structures, which are connected by 87 interconversion transition states at the DFT/B3LYP/6-311G(d) level. The structures of the most relevant isomers and transition states are further optimized at the QCISD/6-311G(d) level followed by CCSD(T)/6-311+G(2df) single-point energy calculations. At the QCISD level, the lowest lying isomer is a linear SiCCCO 1 (0.0 kcal/mol) with the 3 ∑ electronic state, which possesses great kinetic stability of 59.5 kcal/mol and predominant resonant structure . In addition, the bent isomers CSiCCO 2 (68.3 kcal/mol) and OSiCCC 5 (60.1 kcal/mol) with considerable kinetic stability are also predicted to be candidates for future experimental and astrophysical detection. The bond natures and possible formation pathways in interstellar space of the three stable isomers are discussed. The predicted structures and spectroscopic properties for the relevant isomers are expected to be informative for the identification of SiC3O and even larger SiC n O species in laboratory and interstellar medium. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
The mechanisms for the CH2SH + NO reaction were investigated on both of the singlet and triplet PES at the BMC-CCSD//B3LYP/6-311+G(d,p) level. The results indicate that the singlet PES is much lower than the triplet PES energetically; therefore, the reaction occurs on the singlet PES dominantly. The most favorable channel on the singlet PES takes place by a barrierless addition of N atom to CH2SH radical to form HSCH2NO. Subsequently, the rearrangement of the initial adduct HSCH2NO (IM1) to form another intermediate IM3 via a four-center transition state, followed by the C–O bond fission in IM3 leading to the major product CH2S + HNO. Due to high barriers, other product including HC(N)SH + HO, HON + CH2S, and HNO + CHSH could be negligible. The direct abstraction channel was also determined to yield CH2S + HON. With high barrier (33.3 kcal/mol), it is not competitive with the addition channel, in which all stationary points are lower than reactant energetically. While on the triplet PES, with the lowest barrier height (18.8 kcal/mol), the direct N-abstracted channel to form CH2S + HNO is dominant. However, it is not competitive with the channels on the singlet PES. Our results are in good accordance with experimental conclusions that the reaction proceeds via addition mechanism.  相似文献   

19.
The reaction mechanism of sulfur vapor (S) with nitrite ion (NO2 ) has been investigated theoretically on the triplet and singlet potential energy surfaces (PESs). All stationary points for the title reaction have been optimized at the B3LYP/6-311+G(3df) level. The energetic data have been obtained at the CCSD(T)//B3LYP level employing the 6-311+G(3df) basis set. Five stable collision complexes, 3IN1 (S–ONO), 3IN2 (cyclic SONO), 1IN1 (cis S–ONO), 1IN2 (S–NO2 ), and 1IN3 (trans S–ONO), have been considered on the triplet and singlet PESs through barrier-less and exothermic processes. By starting from these complexes, a simple mechanism has been obtained on the triplet PES while a complex mechanism has been considered on the singlet PES. The calculated results show that there are no favorable paths for the reaction of S with NO2 on the singlet PES. Therefore, the S + NO2 reaction proceeds only on the triplet PES to produce 3SO + 3NO as main products. The results from the comparative study of S + NO2 reaction mechanism with S + O3 (as isoelectronic and isostructure reactions) on the singlet PES show similarities in the overall trend of reaction mechanism and atom connectivity and differences in the stability of intermediates and the energy barriers of transition states.  相似文献   

20.
Despite the widespread use of boronic acids in materials science and as pharmaceutical agents, many aspects of their structure and reactivity are not well understood. In this research the boronic acid dimer, [HB(OH)(2)](2), was studied by second-order M?ller-Plesset (MP2) perturbation theory and coupled cluster methodology with single and double excitations (CCSD). Pople split-valence 6-31+G*, 6-311G**, and 6-311++G** and Dunning-Woon correlation-consistent cc-pVDZ, aug-cc-pVDZ, cc-pVTZ, and aug-cc-pVTZ basis sets were employed for the calculations. A doubly hydrogen-bonded conformer (1) of the dimer was consistently found to be lowest in energy; the structure of 1 was planar (C(2h)) at most computational levels employed but was significantly nonplanar (C(2)) at the MP2/6-311++G** and CCSD/6-311++G** levels, the result of an intrinsic problem with Pople-type sp-diffuse basis functions on heavy atoms. The dimerization energy, enthalpy, and free energy for the formation of (1) from the exo-endo conformer of the monomer were -10.8, -9.2, and +1.2 kcal/mol, respectively, at the MP2/aug-cc-pVTZ level. Several other hydrogen-bonded conformers of the dimer were local minima on the potential energy surface (PES) and ranged from 2 to 5 kcal/mol higher in energy than 1. Nine doubly OH-bridged conformers, in which the boron atoms were tetracoordinated, were also local minima on the PES, but they were all greater than 13 kcal/mol higher in energy than 1; doubly H-bridged structures proved to be transition states. MP2 and CCSD results were compared to those from the BLYP, B3LYP, OLYP, O3LYP, PBE1PBE, and TPSS functionals with the 6-311++G** and aug-cc-pVTZ basis sets; the PBE1PBE functional performed best relative to the MP2 and CCSD results. Self-consistent reaction field (SCRF) calculations predict that boronic acid dimerization is less favorable in solution than in vacuo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号