首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Zhou L  Wang W  Wang S  Hui Y  Luo Z  Hu Z 《Analytica chimica acta》2008,611(2):212-219
A novel method based on separation by nonaqueous capillary electrophoresis (NACE) combined with laser-induced fluorescence (LIF) detection was developed and compared with classic aqueous modes of electrophoresis in terms of resolution of solutes of interest and sensitivity of the fluorescence detection. Catecholamines derivatized with 4-chloro-7-nitro-2,1,3-benzoxadiazole (NBD-Cl) were chosen as test analytes for their subtle fluorescence properties. In aqueous systems, capillary zone electrophoresis (CZE) was not suitable for the analysis of test analytes due to complete fluorescence quenching of NBD-labeled catecholamines in neat aqueous buffer. The addition of micelles or microemulsion droplets into aqueous running buffer can dramatically improve the fluorescence response, and the enhancement seems to be comparable for micellar electrokinetic chromatography (MEKC) and microemulsion electrokinetic chromatography (MEEKC). As another alternative, NACE separation was advantageous when performing the analysis under the optimum separation condition of 20 mM sodium tetraborate, 20 mM sodium dodecyl sulfate (SDS), 0.1% (v/v) glacial acetic acid, 20% (v/v) acetonitrile (ACN) in methanol medium after derivatization in ACN/dimethyl sulfoxide (DMSO) (3:2, v/v) mixed aprotic solvents containing 20 mM ammonium acetate. Compared with derivatization and separation in aqueous media, NACE-LIF procedure was proved to be superior, providing high sensitivity and short migration time. Under respective optimum conditions, the NACE procedure offered the best fluorescence response with 5-24 folds enhancement for catecholamines compared to aqueous procedures. In addition, the mechanisms of derivatization and separation in nonaqueous media were elucidated in detail.  相似文献   

2.
A capillary electrophoretic (CE) method was developed for the separation of diastereoisomers of a new human immunodeficiency virus (HIV) protease inhibitor TMC114. In total 16 isomers of this drug have been synthesized (eight pairs of enantiomers). We succeeded in the separation of the eight diastereoisomers, but no enantiomers could be separated. Because of the high similarity and water-insolubility of these isomers, the separation is a real challenge. Different CE modes were tried out: capillary zone electrophoresis (CZE), nonaqueous capillary electrophoresis (NACE), micellar electrokinetic capillary chromatography (MEKC), and microemulsion electrokinetic capillary chromatography (MEEKC). Only MEEKC offered resolution of these compounds.  相似文献   

3.
A comparison between chiral cyclodextrin‐modified microemulsion electrokinetic chromatography (CD‐MEEKC) and cyclodextrin‐modified micellar electrokinetic chromatography (CD‐MEKC) for the enantiomeric separation of esbiothrin was carried out. For both methods, the separation conditions were optimized by varying CD types and concentration, running buffer pH and compositions, organic modifiers, and temperature. The optimal CD‐MEEKC conditions were 0.8% n‐heptane, 2.3% SDS, 6.6% n‐butanol, 90.3% 10 mM sodium tetraborate containing 3% (w/v, the ratio of CD mass to microemulsion volume) methyl‐β‐cyclodextrin, pH 10, 25°C. The optimized CD‐MEKC conditions were 3.3% SDS, 96.7% 10 mM sodium tetraborate containing 5% (w/v) β‐CD, pH 10, 25°C. The difference in physicochemical properties of the buffer and CDs resulted in different optimal CD type. The competitive distribution between the microemulsion (or micelle) and chiral CD contributed to the chiral separation. Both methods provided excellent separation (Rs ~? 3) with similar migration time (ca. 15 min). CD‐MEEKC provided higher separation efficiencies (>300000) than CD‐MEKC (>200000). The LODs for CD‐MEEKC and CD‐MEKC were 4.7 μg/mL and 3.2 μg/mL, respectively. The RSDs of migration time and peak area for CD‐MEEKC were slightly higher than for CD‐MEKC. Both the demonstrated CD‐MEEKC and CD‐MEKC methods provided high efficiencies, low LODs, and reproducible enantioseparations of esbiothrin.  相似文献   

4.
In this study, microemulsion electrokinetic chromatography (MEEKC) and micellar electrokinetic chromatography (MEKC) were compared for their abilities to separate and detect thirteen phenolic compounds (syringic acid, p-coumaric acid, vanillic acid, caffeic acid, gallic acid, 3,4-dihydroxybenzoic acid, 4-hydroxybenzoic acid, (+)-catechin, (-)-epigallocatechin, (-)-epicatechin gallate, (-)-epigallocatechin gallate, (-)-epicatechin, and (-)-gallocatechin), and two other ingredients (caffeine and theophylline) in teas and grapes. Separation of phenolic compounds was improved by changing the SDS concentration for MEEKC, but the SDS concentration rarely affected the resolution for MEKC. Organic modifier (acetonitrile or methanol) was found to markedly influence the resolution and selectivity for both MEEKC and MEKC systems. In addition, a higher voltage and a higher column temperature improved the separation efficiency without any noticeable reduction in resolution for MEEKC whereas they caused a poor resolution for the MEKC system. Although separations with baseline resolution were achieved by the optimized MEEKC and MEKC methods, the separation selectivity resulting from the proposed MEEKC method was completely different from that of MEKC.  相似文献   

5.
Li Q  Chang CK  Huie CW 《Electrophoresis》2005,26(17):3349-3359
The effects of organic solvents on the capillary electrophoresis (CE) separation of a number of important biological porphyrin methyl esters - six weakly basic, hydrophobic cyclic tetrapyrroles possessing two and four to eight methyl ester groups around the periphery of the porphyrin ring - were investigated in the mode of micellar electrokinetic chromatography (MEKC), microemulsion electrokinetic chromatography (MEEKC), and nonaqueous CE. In aqueous MEKC, partial separation of the six neutral porphyrin methyl esters was obtained with an organic modifier (acetonitrile) in the concentration range between 20 and 40%, in which sodium dodecyl sulfate (SDS) molecules might be present in the form of SDS micelles and/or SDS micelle-like aggregates. Relatively stable SDS micelles can be formed in nonaqueous MEKC using formamide as the separation medium, but the separation of the target analytes remained unsatisfactory. Improved resolution of all six porphyrin methyl esters was obtained using MEEKC with the running buffer consisting of 0.8% w/w n-heptane (oil phase), 2.25% w/w SDS and 1.0% w/w Brij 35 (mixed surfactant), 6.6% w/w 1-butanol (cosurfactant), and 30% v/v 2-propanol (second cosurfactant), but reproducibility in terms of peak areas for certain porphyrins (especially uroporphyrin I octamethyl ester) was found to be very poor. Best separation performances were achieved with nonaqueous CE separations in which the weakly basic porphyrin methyl esters were protonated under strongly acidic conditions (e.g., using 10 mM perchloric acid) in mixed organic solvents. For example, using a 50:50 mixture of methanol and acetonitrile as the separation medium, baseline separation of all six (positively charged) porphyrin methyl esters can be obtained within 3 min and the average precision (RSD, N = 13) in terms of migration time and peak area were 0.55 and 2.16%, respectively.  相似文献   

6.
In this study, separation and determination of nine preservatives ranging from hydrophilic to hydrophobic properties, which are commonly used as additives in various pharmaceutical and cosmetic products, by micellar electrokinetic chromatograpy (MEKC) and microemulsion electrokinetic chromatography (MEEKC) were compared. The effect of temperature, buffer pH, and concentration of surfactant on separation were examined. In MEKC, the separation resolution of preservatives improved markedly by changing the sodium dodecyl sulfate concentration. Temperature and pH of running buffers were used mainly to shorten the magnitude of separation time. However, in order to detect all preservatives in a single run in a MEEKC system, a microemulsion of higher pH was needed. The separation resolution was improved dramatically by changing temperature, and a higher concentration of SDS was necessary for maintaining a stable microemulsion solution, therefore the separation of the nine preservatives in MEEKC took longer than in MEKC. An optimum MEKC method for separation of the nine preservatives was obtained within 9.0 min with a running buffer of pH 9.0 containing 20 mM SDS at 25 degrees C. A separation with baseline resolution was also obtained within 16 min using a microemulsion of pH 9.5 which composed of SDS, 1-butanol, and octane, and a shorter capillary column at 34 degrees C. Finally, the developed MEKC and MEEKC methods determined successfully preservatives in various cosmetic and pharmaceutical products.  相似文献   

7.
Melin V  Perrett D 《Electrophoresis》2004,25(10-11):1503-1510
Separations of human urine by microemulsion electrokinetic chromatography (MEEKC) and micellar electrokinetic capillary chromatography (MEKC) with respect to resolution, migration times and efficiencies were optimized and compared. The optimised MEEKC and MEKC methods were simple and fast, both of which are excellent characteristics for the complex separations required in clinical and biomedical studies. However, resolution in MEKC was significantly greater than in MEEKC although migration times were 30% faster for the optimised MEEKC method. In addition, a faster analysis method (short-end injection) specifically for routine screening purposes was also investigated. With both MEEKC and MEKC modes, this provided short separations (less than 4 min for urine) with no major compromise in resolution. In conclusion, we found that MEEKC offered no real advantage over MEKC for urine analysis.  相似文献   

8.
The elution order of the hop α- and β-acids has been studied under different modes of electrokinetic separation. A model is advanced to explain the shorter migration times of the more hydrophobic β-acids compared to the α-acids in micellar electrokinetic chromatography (MEKC). For quality control of the bitter principles in hops, the ruggedness of electrokinetic separation could be improved by replacing MEKC by microemulsion electrokinetic chromatography (MEEKC).  相似文献   

9.
Separation and determination of water- and fat-soluble vitamins by micellar (MEKC) and microemulsion electrokinetic chromatography (MEEKC) are compared. MEKC is only useful in the quantitative analysis of water-soluble vitamins when sodium dodecylsulfate (SDS) is used as the surfactant. However, the separation of mixtures containing water- and fat-soluble vitamins is only achieved by MEEKC using a microemulsion prepared by mixing SDS as the surfactant, butanol as the co-surfactant, octane as the non-polar modifier and propanol as the second co-surfactant. The injection time and the solvent used for the dilution of samples have a significant effect on the analysis of lypophilic compounds. The most reproducible results in the analysis of fat-soluble vitamins are obtained by using the same microemulsion electrolyte as the solvent for samples and an injection time of 10 s.  相似文献   

10.
Yang X  Xia Y  Tao C  Liao Y  Zuo Y  Liu H 《Electrophoresis》2007,28(11):1744-1751
An investigation of the basic factors which govern the microemulsion EKC (MEEKC) and MEKC for the separation of four benzoylurea (BU) insecticides and their four analogs was carried out. In MEEKC, the separation of eight BU compounds was optimized by changing the microemulsion composition, such as concentration of SDS, octane, n-butanol, and isopropanol percentages, as well as capillary temperature. Separation optimization was also carried out for MEKC, showing that ACN and a high level of another additive gamma-CD were needed to achieve effective separation of these analytes. Although separation with baseline resolution was achieved by either MEEKC or MEKC methods, the separation selectivity resulting from the proposed MEEKC method was completely different from that of MEKC. In addition, analytical time in MEEKC was longer than that in MEKC, but in view of theoretical plate numbers, detection limits, and reproducibility, both methods were effective for the analysis of BU insecticides and their analogs.  相似文献   

11.
Huang HY  Lien WC  Huang IY 《Electrophoresis》2006,27(16):3202-3209
In this study, anion-selective exhaustive injection-sweeping (ASEI-sweeping) technique, which is a selective on-line sample concentration technique, was first proposed in microemulsion electrokinetic chromatography (MEEKC) for analyses of eight acidic phenolic compounds. In contrast to a capillary that is typically filled with nonmicellar background solution in conventional ASEI-sweeping MEKC method, in the proposed ASEI-sweeping MEEKC method, a capillary is filled with a low pH microemulsion solution (pH 2.0), and then with a short acid plug (pH 2.0, 1.9 cm) before field-amplified sample injection. This proposed design has two functions. First, the microemulsion solution that is present at the front of capillary column is able to avoid phase separation of microemulsion solution during MEEKC separation. Second, the presence of the short acid plug would effectively limit the partition behavior of acid analytes with the oil droplets in the microemulsion during field-amplified sample injection; otherwise, the stacking effect of acid analytes would be markedly reduced. This optimal ASEI-sweeping MEEKC method afforded about 96,000-fold to 238,000-fold increases in detection sensitivity in terms of peak areas without any separation efficiency loss when compared to normal MEEKC separation. Furthermore, trace levels (about 3 ng/g) of gallic acid and catechin in foods were also detected successfully by the proposed ASEI-sweeping MEEKC technique.  相似文献   

12.
 Different capillary electrophoretic techniques were investigated and compared for the separation of low-molecular-mass phenolic and neutral lignin degradation compounds. Simple capillary zone electrophoresis (CZE) was not suited for this problem. Switching to micellar electrokinetic capillary chromatography (MEKC) by adding micelle-forming reagents to the carrier electrolyte enhanced the separation performance considerably. Alternatively, microemulsion electrokinetic chromatography (MEEKC) was investigated. This is a CE technique in which analytes interact with moving oil droplets present in a microemulsion buffer. Using the optimized carrier electrolyte systems and a 60 cm×50 μm I.D. bubble cell capillary it was possible to analyse solutions of different wood digestion procedures and to investigate differences in lignin degradation products during use of different kinds of wood (eucalyptus, beech, scotch pine and acacia). Received August 25, 1999. Revision April 13, 2000  相似文献   

13.
Gong S  Liu F  Li W  Gao F  Gao C  Liao Y  Liu H 《Journal of chromatography. A》2006,1121(2):274-279
In this study, the separation of 13 homologous stick-like hydrophobic solutes, i.e., biphenyl nitrile derivatives, by organic-solvent-based micellar electrokinetic chromatography (MEKC) was investigated in terms of separation medium composition, species and concentration of surfactant, other additives, separation voltage and temperature. The results showed that the 13 strong hydrophobic compounds were baseline separated in 25 min with a repeatability of less than 1.3% (RSD) for migration time. The separation medium was a mixture of methanol, 2-propanol and water (58.5:10:31.5), containing 150 mM cetyltrimethylammonium bromide (CTAB) and 20 mM sodium borate. Variety of solvent composition, temperature and applied voltage all showed remarkable effect on the separation. The organic-solvent-based MEKC method proved to be superior to the aqueous MEKC and microemulsion electrokinetic chromatography (MEEKC) methods for the separation of strongly hydrophobic compounds.  相似文献   

14.
彭振磊  林金明 《色谱》2009,27(5):621-630
近年来毛细管微乳电动色谱(MEEKC)研究的范围不断扩大,其分离分析的化合物类型也不断增多。该文综述了2002年以来MEEKC应用的研究进展,指出了目前MEEKC研究中存在的一些问题,对今后的研究发展方向进行了展望。  相似文献   

15.
考察了用微乳液毛细管电动色谱(MEEKC)分离蛋白质时微乳液组成等不同因素对分离的影响,并与胶束电动色谱进行对比,探讨了其分离机理,为蛋白质的分离鉴定提供了一种有力的工具.  相似文献   

16.
A mixture of nine biphenyl nitrile compounds with high hydrophobicity and similar structures was successfully separated by microemulsion electrokinetic chromatography (MEEKC) within 30 rain. The buffer system contained 100 mmol/L sodium dodecyl sulfate (SDS), 80 mlnol/L sodium cholate (SC), 0.81% heptane, 7.5% n-butanol, 10% acetonitrile and 10 mmol/L borate. The addition of SC, organic modifiers, sample preparation and temperature all showedremarkable effect on the separation. Meanwhile, the MEEKC method was briefly compared with micellar electrokinetic chromatography (MEKC) method.  相似文献   

17.
Micellar electrokinetic chromatography (MEKC) and microemulsion electrokinetic chromatography (MEEKC) are two kinds of electrokinetic capillary chromatography (EKC), which are characterized of high solubilization capacity and separation efficiency. In our previous work, some polar organic compounds and hydrophobic neutral compounds were separated successfully by EKC1-3. In this paper, these methods were used for separating six pyridoncarboylxic acid derivatives with similar structures. T…  相似文献   

18.
Different capillary electromigration techniques were employed to resolve geometrical isomers of sorbic acid, decadienoic acid, and ethyl sorbate. Since these substances differ in their polarity, shape, and size, various electromigration approaches were investigated to separate the four geometrical isomers of each compound. With capillary electrophoresis (CE) modified with a cyclodextrin (β‐CD) the four isomers of sorbic acid were separated using a buffer that consists of 60 mM tetraborate and 8 mg/mL β‐CD. The separation of decadienoic acid geometrical isomers was not possible, even at elevated tetraborate and cyclodextrin concentrations. The four isomers of decadienoic acid were successfully separated using micellar electrokinetic chromatography (MEKC) with a buffer consisting of 30 mM tetraborate and 100 mM SDS and microemulsion electrokinetic chromatography (MEEKC). Ethyl sorbate is the least polar of all the studied substances and its isomers could not be separated by MEKC or MEEKC. The resolution was improved and isomers were fully separated using capillary electrochromatography (CEC) with ODS stationary phase and a mobile phase consisting of 10 mM boric acid in 50% acetonitrile. Minor differences in the polarity and the shape of isomers and high resolving power of the applied techniques were sufficient for separation of very similar compounds. We have shown that versatile electromigration techniques can be applied for separation of geometrical isomers of dienoic acids and their esters.  相似文献   

19.
Huang HY  Chiu CW  Chen YC  Yeh JM 《Electrophoresis》2005,26(4-5):895-902
Microemulsion electrokinetic chromatography (MEEKC) and micellar electrokinetic chromatograpy (MEKC) were compared for their abilities to separate and detect ten similar benzophenones, which are commonly used as UV filters in various plastic and cosmetic products. Sodium dodecyl sulfate (SDS) concentration and column temperature rarely affected separation resolution for MEEKC, but separation of benzophenones could be improved by changing the SDS concentration and column temperature for MEKC. Buffer pH and ethanol (organic modifier) were found to markedly influence the separation selectivity for both MEEKC and MEKC systems. In addition, a higher electric voltage improved the separation efficiency without a noticeable reduction in separation resolution for MEEKC, whereas it caused a poor separation resolution for the MEKC system.  相似文献   

20.
The electrophoretic behaviors of five bases and corresponding nucleosides in the oil in water (o/w) microemulsion capillary electrophoresis, microemulsion electrokinetic chromatography (MEEKC), were examined in comparison with those in normal capillary zone electrophoresis (CZE). The microemulsion systems were composed of heptane, sodium dodecyl sulfate (SDS), 1-butanol and 10 mM phosphate buffer (pH 7.0) or toluene, SDS, 1-butanol and 5 mM carbonate buffer (pH 10.0). CZE was carried out in the range of pH 9.7-10.9, and the dissociation constants, pKa, of the bases and nucleosides and the electrophoretic mobilities of the anionic forms were determined. The electrophoretic behaviors of the solutes in the microemulsion systems were analyzed from their pKa, the electrophoretic mobilities of the anions determined by CZE, and the distribution constants, K(D), of the neutral forms between the microemulsion droplets and the outer aqueous phase. The importance of adsorption mechanism in MEEKC system was suggested from the correlation between log K(D) and log P.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号