首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Huang HY  Lien WC 《Electrophoresis》2005,26(16):3134-3140
In this study, a microemulsion electrokinetic chromatography (MEEKC) method was developed to analyze and detect 13 phenolic compounds (syringic acid, p-cumaric acid, vanillic acid, caffeic acid, gallic acid, 3,4-dihydroxybenzoic acid, 4-hydroxybenzoic acid, (+)-catechin, (-)-epigallocatechin, (-)-epicatechin gallate, (-)-epigallocatechin gallate, (-)-epicatechin, and (-)-gallocatechin), which are present in many plant-derived foods. The effects of cosurfactant, organic modifier, and oil were examined in order to optimize the separation of these phenolic compounds. The amounts of cosurfactant (cyclohexanol) and organic modifier (acetonitrile) were determined as the major influence on the separation selectivity, while the type of oil partially affected the separation resolution of the phenolic compounds. A highly efficient MEEKC separation method was achieved within 14 min by using a microemulsion solution of pH 2.0 containing 2.89% w/v SDS, 1.36% w/v heptane, 7.66% w/v cyclohexanol, and 2% w/v ACN. Furthermore, the present work could demonstrate that the nature of the oil phase has a significant influence on the separation selectivity of phenolic compounds.  相似文献   

2.
Huang HY  Chiu CW  Chen YC  Yeh JM 《Electrophoresis》2005,26(4-5):895-902
Microemulsion electrokinetic chromatography (MEEKC) and micellar electrokinetic chromatograpy (MEKC) were compared for their abilities to separate and detect ten similar benzophenones, which are commonly used as UV filters in various plastic and cosmetic products. Sodium dodecyl sulfate (SDS) concentration and column temperature rarely affected separation resolution for MEEKC, but separation of benzophenones could be improved by changing the SDS concentration and column temperature for MEKC. Buffer pH and ethanol (organic modifier) were found to markedly influence the separation selectivity for both MEEKC and MEKC systems. In addition, a higher electric voltage improved the separation efficiency without a noticeable reduction in separation resolution for MEEKC, whereas it caused a poor separation resolution for the MEKC system.  相似文献   

3.
In this study, separation and determination of nine preservatives ranging from hydrophilic to hydrophobic properties, which are commonly used as additives in various pharmaceutical and cosmetic products, by micellar electrokinetic chromatograpy (MEKC) and microemulsion electrokinetic chromatography (MEEKC) were compared. The effect of temperature, buffer pH, and concentration of surfactant on separation were examined. In MEKC, the separation resolution of preservatives improved markedly by changing the sodium dodecyl sulfate concentration. Temperature and pH of running buffers were used mainly to shorten the magnitude of separation time. However, in order to detect all preservatives in a single run in a MEEKC system, a microemulsion of higher pH was needed. The separation resolution was improved dramatically by changing temperature, and a higher concentration of SDS was necessary for maintaining a stable microemulsion solution, therefore the separation of the nine preservatives in MEEKC took longer than in MEKC. An optimum MEKC method for separation of the nine preservatives was obtained within 9.0 min with a running buffer of pH 9.0 containing 20 mM SDS at 25 degrees C. A separation with baseline resolution was also obtained within 16 min using a microemulsion of pH 9.5 which composed of SDS, 1-butanol, and octane, and a shorter capillary column at 34 degrees C. Finally, the developed MEKC and MEEKC methods determined successfully preservatives in various cosmetic and pharmaceutical products.  相似文献   

4.
A micellar electrokinetic capillary chromatography (MEKC) method for the simultaneous analysis of five tea catechins, theanine, caffeine, gallic acid and ascorbic acid has been developed. The catechins are (-)-epicatechin, (+)-catechin, (-)-epigallocatechin, (-)-epicatechin gallate and (-)-epigallocatechin gallate. p-Nitrophenol serves as both reference and internal standard. All the components are separated within 13 min with a 57 cm uncoated fused-silica column. On-column detection was carried out at 200 nm. This method has been used to measure these compounds in fresh tea leaves and tea liquor. The limit of detection for all analytes ranged from 1 to 20 microg/ml.  相似文献   

5.
Pomponio R  Gotti R  Luppi B  Cavrini V 《Electrophoresis》2003,24(10):1658-1667
Microemulsion electrokinetic chromatography (MEEKC) was applied to the separation of six catechins and caffeine, the major constituents of the green tea. The developed methods involved the use of sodium dodecyl sulfate (SDS) as surfactant, n-heptane as organic solvent and an alcohol as cosurfactant. The separations were performed under acidic conditions (pH 2.5 phosphate buffer, 50 mM) to ensure good stability of the catechins, with reversed polarity (anodic outlet). The effect of the alcohol nature on the MEEKC selectivity was evaluated; nine alcohols were used as cosurfactant: 1-butanol, tert-butanol, 1-pentanol, 2-pentanol, 3-pentanol, cyclopentanol, 1-hexanol, 2-hexanol, and cyclohexanol. The migration order of (+)-catechin (C), (-)-epicatechin (EC), (-)-epigallocatechin (EGC), (-)-gallocatechin (GC), (-)-epigallocatechin gallate (EGCG), (-)-epicatechin gallate (ECG), caffeine and theophylline was significantly affected by the alcohol used as cosurfactant. Using nine microemulsions, four different selectivities were achieved: A (cyclohexanol); B (2-pentanol, 3-pentanol, 1-hexanol, 2-hexanol); C (1-butanol, 1-pentanol, cyclopentanol); D (tert-butanol). MEEKC methods, based on 2-hexanol and cyclohexanol as cosurfactant were validated and successfully applied to the analysis of catechins and caffeine in commercial green tea products.  相似文献   

6.
Li Q  Chang CK  Huie CW 《Electrophoresis》2005,26(4-5):885-894
An investigation of the basic factors which govern the microemulsion electrokinetic chromatography (MEEKC) and micellar electrokinetic chromatography (MEKC) separation of Hematoporphyrin D and its base hydrolysis product, hematoporphyrin derivative (HpD), was performed. These model compounds contain a complex mixture of porphyrin monomers, dimers and/or oligomers, and were utilized to gain insights into the MEEKC/micellar electrokinetic chromatography (MEKC) separation of samples containing highly lipophilic substances. For example, the organic modifier/cosurfactant (1-butanol) and/or oil phase (e.g., 1-octanol in comparison to ethyl acetate) were found to have an apparent influence on the separation selectivity of Hematoporphyrin D, the extent of which was dependent on the chemical nature of the surfactant employed (e.g., sodium dodecyl sulfate vs. sodium cholate). An interesting and important finding was that the presence of an organic modifier (methanol or acetonitrile at a concentration of 20% or higher) in the sample matrix as well as in the run buffer was essential for the optimal MEEKC or MEKC separation of a number of porphyrin monomers (including hematoporphyrin IX and its acetates, most likely hydroxyacetate, diacetate, and vinyl acetate, as well as its dehydration products, hydroxyethylvinyldeuteroporphyrin and protoporphyrin) contained in Hematoporphyrin D. On the other hand, the use of these optimized conditions for the MEEKC or MEKC separation of various oligomeric porphyrin species in HpD were unsatisfactory. As HpD is a well-known and effective photosensitizing agent in photodynamic therapy (a new approach for cancer treatment), the improved separation and characterization of various monomeric and oligomeric porphyrin species in HpD and its starting material, such as Hematoporphyrin D, is a challenging and important task.  相似文献   

7.
Huang HY  Lien WC  Huang IY 《Electrophoresis》2006,27(16):3202-3209
In this study, anion-selective exhaustive injection-sweeping (ASEI-sweeping) technique, which is a selective on-line sample concentration technique, was first proposed in microemulsion electrokinetic chromatography (MEEKC) for analyses of eight acidic phenolic compounds. In contrast to a capillary that is typically filled with nonmicellar background solution in conventional ASEI-sweeping MEKC method, in the proposed ASEI-sweeping MEEKC method, a capillary is filled with a low pH microemulsion solution (pH 2.0), and then with a short acid plug (pH 2.0, 1.9 cm) before field-amplified sample injection. This proposed design has two functions. First, the microemulsion solution that is present at the front of capillary column is able to avoid phase separation of microemulsion solution during MEEKC separation. Second, the presence of the short acid plug would effectively limit the partition behavior of acid analytes with the oil droplets in the microemulsion during field-amplified sample injection; otherwise, the stacking effect of acid analytes would be markedly reduced. This optimal ASEI-sweeping MEEKC method afforded about 96,000-fold to 238,000-fold increases in detection sensitivity in terms of peak areas without any separation efficiency loss when compared to normal MEEKC separation. Furthermore, trace levels (about 3 ng/g) of gallic acid and catechin in foods were also detected successfully by the proposed ASEI-sweeping MEEKC technique.  相似文献   

8.
A comparison between chiral cyclodextrin‐modified microemulsion electrokinetic chromatography (CD‐MEEKC) and cyclodextrin‐modified micellar electrokinetic chromatography (CD‐MEKC) for the enantiomeric separation of esbiothrin was carried out. For both methods, the separation conditions were optimized by varying CD types and concentration, running buffer pH and compositions, organic modifiers, and temperature. The optimal CD‐MEEKC conditions were 0.8% n‐heptane, 2.3% SDS, 6.6% n‐butanol, 90.3% 10 mM sodium tetraborate containing 3% (w/v, the ratio of CD mass to microemulsion volume) methyl‐β‐cyclodextrin, pH 10, 25°C. The optimized CD‐MEKC conditions were 3.3% SDS, 96.7% 10 mM sodium tetraborate containing 5% (w/v) β‐CD, pH 10, 25°C. The difference in physicochemical properties of the buffer and CDs resulted in different optimal CD type. The competitive distribution between the microemulsion (or micelle) and chiral CD contributed to the chiral separation. Both methods provided excellent separation (Rs ~? 3) with similar migration time (ca. 15 min). CD‐MEEKC provided higher separation efficiencies (>300000) than CD‐MEKC (>200000). The LODs for CD‐MEEKC and CD‐MEKC were 4.7 μg/mL and 3.2 μg/mL, respectively. The RSDs of migration time and peak area for CD‐MEEKC were slightly higher than for CD‐MEKC. Both the demonstrated CD‐MEEKC and CD‐MEKC methods provided high efficiencies, low LODs, and reproducible enantioseparations of esbiothrin.  相似文献   

9.
Cao J  Chen J  Yi L  Li P  Qi LW 《Electrophoresis》2008,29(11):2310-2320
Oil-in-water (O/W) and water-in-oil (W/O) MEEKC were compared for their abilities to separate and detect eight phenolic acids and five diterpenoids in Radix et Rhizoma Salviae Miltiorrhizae (RRSM). The effects of oil type and concentration, organic modifier, SDS, and buffer concentration on separation were examined in order to optimize the two methods. Oil contents and organic modifier were found to markedly influence the separation selectivity for both O/W and W/O systems. SDS concentration rarely affected separation resolution for O/W MEEKC, and separation of eight phenolic acids and five diterpenoids could be improved by changing the buffer concentration for W/O MEEKC. A highly efficient O/W MEEKC separation method, where the 13 compounds were separated with baseline resolution, was achieved by using a microemulsion solution of pH 8.0 containing 0.6% cyclohexane, 3.0% SDS, 6.0% 1-butanol, and 3.0% ACN. The W/O MEEKC was unable to resolve all the components. In addition, the analytic time in O/W MEEKC was shorter than that in W/O MEEKC. Finally, the developed O/W MEEKC method was successfully applied to determine analytic compounds in RRSM samples.  相似文献   

10.
Melin V  Perrett D 《Electrophoresis》2004,25(10-11):1503-1510
Separations of human urine by microemulsion electrokinetic chromatography (MEEKC) and micellar electrokinetic capillary chromatography (MEKC) with respect to resolution, migration times and efficiencies were optimized and compared. The optimised MEEKC and MEKC methods were simple and fast, both of which are excellent characteristics for the complex separations required in clinical and biomedical studies. However, resolution in MEKC was significantly greater than in MEEKC although migration times were 30% faster for the optimised MEEKC method. In addition, a faster analysis method (short-end injection) specifically for routine screening purposes was also investigated. With both MEEKC and MEKC modes, this provided short separations (less than 4 min for urine) with no major compromise in resolution. In conclusion, we found that MEEKC offered no real advantage over MEKC for urine analysis.  相似文献   

11.
A group of phenolic compounds including phenolic aldehydes, acids and flavonoids are separated by micellar electrokinetic chromatography (MECC). The influence of buffer (concentration and pH), concentration of sodium dodecylsulphate (SDS) and applied voltage were studied. To increase the selectivity of the separation and the resolution of the solutes organic solvents are added to the separation buffer, the best results were obtained when methanol was used at lower percentages. An optimized buffer (150 mM boric acid (pH 8.5)-50 mM SDS-5% methanol) provides the optimum separation with regard to resolution and migration time. This method was applied to the determination of these compounds in wine samples with good results.  相似文献   

12.
彭振磊  林金明 《色谱》2009,27(5):621-630
近年来毛细管微乳电动色谱(MEEKC)研究的范围不断扩大,其分离分析的化合物类型也不断增多。该文综述了2002年以来MEEKC应用的研究进展,指出了目前MEEKC研究中存在的一些问题,对今后的研究发展方向进行了展望。  相似文献   

13.
Procyanidins are phenolic oligomers, mainly composed of (+)-catechin and (-)-epicatechin units that exhibit certain sensorial and physiological properties of interest (e.g., astringency and bitterness of food, antioxidant activity, etc.). This paper shows the development of a micellar electrokinetic chromatography (MEKC) method for the separation of three procyanidin dimers (B1, B2, and B3), their monomers ((+)-catechin and (-)-epicatechin), and the cis- and trans-forms of p-coumaric acid. Separation conditions are optimized in terms of buffer pH, SDS concentration, and washing routine between injections. The best results in terms of peak resolution and reproducibility between separations were obtained with a MEKC running buffer at pH 5 with 100 mM SDS and a washing routine that includes a rinse step with 0.1 M sodium hydroxide. Using this new MEKC method it is possible to separate in less than 5 min the seven substances. More interestingly, it is demonstrated that the low pH used in this MEKC method allows one to obtain clean electropherograms when samples are injected. The method is shown to be reproducible between different days with relative standard deviation (RSD) values lower than 1% for migration times and lower than 7% for peak areas (3 days, 24 injections). The usefulness of this procedure to determine these compounds in effluents from food processing (i.e., soaking water from lentils, white beans and black beans) and in food by-products (i.e., almond peels) considered as potential procyanidin sources is demonstrated. To our knowledge, this is the first report of separation and determination of procyanidins in food samples done by capillary electrophoresis.  相似文献   

14.
A microemulsion electrokinetic chromatography (MEEKC) method was developed to analyze and detect eight food colorants (tartrazine, fast green FCF, brilliant blue FCF, allura red AC, indigo carmine, sunset yellow FCF, new coccine, and carminic acid), which are commonly used as food additives in various food products. The effects of sodium dodecyl sulfate (SDS) surfactant, organic modifier, cosurfactant, and oil were examined in order to optimize the separation. The amount of organic modifier (acetonitrile) and SDS surfactant were determined as apparent influences on the separation resolution while the type of oil and cosurfactant rarely affected the separation selectivity of the eight colorants. A highly efficient MEEKC separation method, where the eight colorants were separated with baseline resolution within 14 min, was achieved by using a microemulsion solution of pH 2.0 containing 3.31% SDS, 0.81% octane, 6.61% 1-butanol, and 10% acetonitrile. This optimal MEEKC method has a higher separation efficiency and similar detection limit when compared to conventional capillary electrophoresis (CE) method. Furthermore, a sample pretreatment is rarely needed when this MEEKC technique is used to analyze colorants in food products, whereas a suitable sample pretreatment (for example solid-phase extraction) has to be employed prior to CE separation in order to eliminate matrix interferences resulting from the constituents of the food sample.  相似文献   

15.
Gong S  Liu F  Li W  Gao F  Gao C  Liao Y  Liu H 《Journal of chromatography. A》2006,1121(2):274-279
In this study, the separation of 13 homologous stick-like hydrophobic solutes, i.e., biphenyl nitrile derivatives, by organic-solvent-based micellar electrokinetic chromatography (MEKC) was investigated in terms of separation medium composition, species and concentration of surfactant, other additives, separation voltage and temperature. The results showed that the 13 strong hydrophobic compounds were baseline separated in 25 min with a repeatability of less than 1.3% (RSD) for migration time. The separation medium was a mixture of methanol, 2-propanol and water (58.5:10:31.5), containing 150 mM cetyltrimethylammonium bromide (CTAB) and 20 mM sodium borate. Variety of solvent composition, temperature and applied voltage all showed remarkable effect on the separation. The organic-solvent-based MEKC method proved to be superior to the aqueous MEKC and microemulsion electrokinetic chromatography (MEEKC) methods for the separation of strongly hydrophobic compounds.  相似文献   

16.
Tao Wen  Guoan Luo  Jian Wang  Bo Yao  Jun Zhu 《Talanta》2007,71(2):854-860
Microemulsion electrokinetic chromatography (MEEKC) and solvent modified micellar electrokinetic chromatography (MEKC) were investigated with the goal of the rapid separation of complex heroin and amphetamine samples. The rapid simultaneous separation of 17 species of heroin, amphetamine and their basic impurities and adulterants was performed within about 10 min using MEEKC for the first time, whereas solvent modified MEKCs were unable to resolve all the components. The comparisons between MEEKC and solvent modified MEKC proved internal lipophilic organic phase in microemulsions played an important role in improving the separation performance with respect to efficiency. However, the role of internal lipophilic organic phase in MEEKC was disgusted at high concentrations of cosurfactant, and the separations of MEEKC and 1-butanol modified MEKC became similar at high concentrations of 1-butanol. The evaluation of reproducibility, linearity and detection limit of optimized MEEKC method provided good results for all the analytes investigated, thus allowing its application to real controlled drug preparation analysis.  相似文献   

17.
The migration behaviour of isoquinoline, quinoline, and methyl derivatives of quinoline in different capillary electrophoretic modes has been systematically investigated. Optimised separation conditions were established by varying the key parameters (solvent, pH, temperature, surfactant concentration, core phase) for aqueous and non‐aqueous capillary zone electrophoresis (NACE), micellar electrokinetic chromatography (MEKC) with anionic or non‐ionic micelles (SDS, Brij 35), and microemulsion electrokinetic chromatography (MEEKC) with charged or uncharged microemulsion droplets. A separation of all quinolines could be achieved by MEEKC with charged droplets, by MEKC or by formamide‐based NACE. Comparing the separations with respect to separation selectivity, substantial changes in migration order could be observed between the different techniques. Regarding separation efficiency, the number of theoretical plates and limits of detection (LOD) have been compared. The best LODs were achieved using SDS as surfactant in MEKC, followed by MEEKC.  相似文献   

18.
In this study, microemulsions of the chiral surfactant polysodium N-undecenoyl-D-valinate (poly-D-SUV) was utilized for enantiomeric separation by investigating two approaches using polymeric chiral surfactant in microemulsion electrokinetic chromatography (MEEKC). In the first approach, poly-D-SUV was used as an emulsifier surfactant along with 1-butanol and n-heptane. Enantioseparation of anionic or partially anionic binaphthyl derivatives, anionic barbiturates, and cationic paveroline derivatives were achieved by varying the mass fraction of 1-butanol, n-heptane and poly-D-SUV. For anionic or partially anionic analytes, relatively lower mass fractions of n-heptane, and poly-D-SUV were found to give optimum chiral separations as compared to that for cationic solutes. In the second approach, the chiral microemulsion polymer was prepared by polymerizing mixtures of 3.50% (w/w) of sodium N-undecenoyl-D-valinate (D-SUV) and 0.82% (w/w) of n-heptane (core phase) at varying concentration of 1-butanol. After polymerization, the n-heptane and 1-butanol were removed to yield solvent free microemulsion polymers (MPs) which were then utilized for the separation of anionic binaphthyl derivatives and anionic barbiturates. When MPs of D-SUV were utilized for chiral separation, 1.00% (w/w) 1-butanol and 3.50% (w/w) 1-butanol was optimum for enantioseparation of (+/-)-BNP and (+/-)-BOH, respectively. On the other hand, for anionic (+/-)-barbiturates very low concentration of butanol (0.25%, w/w) provided optimum resolution. Compared with micellar electrokinetic chromatography (MEKC), the use of micelle polymers or microemulsion polymers in MEEKC showed dramatic enhancement for resolution of (+/-)-BNP, while this enhancement was less dramatic for other binaphthyls [(+/-)-BOH, (+/-)-BNA] as well as for (+/-)-barbiturates and (+/-)-paveroline derivatives. However, higher separation efficiency of the enantiomers was always observed with MEEKC than in MEKC.  相似文献   

19.
Cis-diol-containing compounds (CDCCs) are usually highly hydrophilic compounds and are therefore difficult to separate by conventional reversed-phase-based micellar electrokinetic chromatography (MEKC) due to poor selectivity. Here, we report a new method, called boronate affinity-assisted micellar electrokinetic chromatography (BAA-MEKC), to solve this issue. A boronic acid with a hydrophobic alkyl chain was added to the background electrolyte, which acted as a modifier to adjust the selectivity. CDCCs can covalently react with the boronic acid to form negatively charged surfactant-like complexes, which can partition into micelles formed with a cationic surfactant. Thus, CDCCs can be separated according to the differential partition constants of their boronic acid complexes between the micellar phase and the surrounding aqueous phase. To verify this method, eight nucleosides were employed as the test compounds and their separation confirmed that the combination of boronate affinity interaction with MEKC can effectively enhance the separation of CDCCs. The effects of experimental conditions on the separation were investigated. Finally, the BAA-MEKC method was applied to the separation and analysis of nucleosides extracted from human urine. BAA-MEKC exhibited better selectivity and improved separation as compared with conventional MEKC and CZE. Successful quantitative analysis of urinary nucleosides by BAA-MEKC was demonstrated.  相似文献   

20.
Cyclodextrin-modified micellar electrokinetic chromatography was applied to the enantioseparation of catechin and epicatechin using 6-O-alpha-D-glucosyl-beta-cyclodextrin together with sodium dodecyl sulfate and borate-phosphate buffer. Factors affecting chiral resolution and migration time of catechin and epicatechin were studied. The optimum running conditions were found to be 200 mM borate-20 mM phosphate buffer (pH 6.4) containing 25 mM 6-O-alpha-D-glucosyl-beta-cyclodextrin and 240 mM sodium dodecyl sulfate with an effective voltage of +25 kV at 20 degrees C using direct detection at 210 nm. Under these conditions, the resolution (Rs) of racemic catechin and epicatechin were 4.15 and 1.92, respectively. With this system, catechin and epicatechin enantiomers along with other four catechins ((-)-catechin gallate, (-)-epicatechin gallate, (-)-epigallocatechin, (-)-epigallocatechin gallate) and caffeine in tea samples were analyzed successfully. The difference of migration time between catechin and epicatechin is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号