首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Novel core–double shell particles with poly(methyl methacrylate-co-butyl acrylate) (PMMA-co-BA) as the cores, poly(methyl methacrylate-co-butyl acrylate-co-methacrylic acid) (PMMA-co-BA-co-MAA) as the inner shells, poly(styrene-co-methyl methacrylate) (PS-co-MMA) as the outer shells were prepared by soap-free emulsion polymerization. The acid–alkali osmotic swelling processes were made before the outer shells wrapped for bigger aperture. The optimal experiment conditions were summarized. The morphology and size of the hollow latex particles were observed by transmission electron microscopy. The results showed that the uniform sizes of the hollow latex particles were about 230 nm. The electrophoretic mobility of them in tetrachloroethylene was 0.91 × 10−10 m2 V−1 s−1, and the Zeta-potential was 5.87 mV. The results showed that the hollow polymer particles can used as background particles.  相似文献   

2.
A numerical method is proposed for the characterization of core–shell spherical particles from static light scattering (SLS) measurements. The method is able to estimate the core size distribution (CSD) and the particle size distribution (PSD), through the following two-step procedure: (i) the estimation of the bivariate core–particle size distribution (C–PSD), by solving a linear ill-conditioned inverse problem through a generalized Tikhonov regularization strategy, and (ii) the calculation of the CSD and the PSD from the estimated C–PSD. First, the method was evaluated on the basis of several simulated examples, with polystyrene–poly(methyl methacrylate) core–shell particles of different CSDs and PSDs. Then, two samples of hematite–Yttrium basic carbonate core–shell particles were successfully characterized. In all analyzed examples, acceptable estimates of the PSD and the average diameter of the CSD were obtained. Based on the single-scattering Mie theory, the proposed method is an effective tool for characterizing core–shell colloidal particles larger than their Rayleigh limits without requiring any a-priori assumption on the shapes of the size distributions. Under such conditions, the PSDs can always be adequately estimated, while acceptable CSD estimates are obtained when the core/shell particles exhibit either a high optical contrast, or a moderate optical contrast but with a high ‘average core diameter’/‘average particle diameter’ ratio.  相似文献   

3.
In this paper, the copolymer shell with the internal hydrophobic polymethacrylate layer and the external hydrophilic poly(ethylene glycol) methyl ether groups was successfully bonded on the surface of ZnO nanocrystals through a simple sol–gel method, i.e., radical polymerization of zinc methacrylate (Zn(MA)2) and poly(ethylene glycol) methyl ether methacrylate (PEGMEMA) and hydrolysis. The prepared ZnO@poly(methacrylate-co-poly(ethylene glycol) methyl ether methacrylate) (ZnO@PPEGMA) nanocrystals showed good dispersion and smaller particle size, due to the presence of copolymer shell. The optical properties of ZnO@PPEGMA nanocrystals were characterized by ultraviolet–visible (UV–vis) spectroscopy and photoluminescence (PL) spectroscopy. The results indicated that the absorption edge and PL emission in the UV region of ZnO@PPEGMA nanocrystals appeared obvious blue-shift, due to the smaller particle size. Incorporation of ZnO@PPEGMA nanocrystals into poly(3-hexylthiophene) (P3HT) matrix, the dispersion of P3HT/ZnO@PPEGMA nanocomposites was greatly improved and the nanocomposites possessed excellent photoluminescence stability. Meanwhile, it was observed that the PL emission of P3HT/ZnO@PPEGMA nanocomposites was enhanced significantly, due to the presence of copolymer shell and the improvement of compatibility of ZnO@PPEGMA in the P3HT matrix. The results showed that the P3HT/ZnO@PPEGMA nanocomposites could be potential candidates for optical applications.  相似文献   

4.
The core/shell particles consisting of polymethyl methacrylate (PMMA) core and polydimethylsiloxane (PDMS) shell via 3-(methacryloxypropyl)-trimethoxysilane (MPS) as the medium to link the core and shell were prepared in our present study by successive seeding polymerization under kinetically controlled conditions and were characterized by FT-IR, particle size analyzer, transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS).The picture of optical microscope showed the clear form of PDMS-0 and PDMS-40 (the content of PDMS in the particles), which approached to monodispersed distribution. Compared with the PMMA microspheres, PDMS-40 presented an evident core/shell structure through the observation of TEM. Additionally, the study of XPS revealed that PDMS could be grafted onto the surface of PMMA particles and the atomic ratio of C/Si on the surface of PDMS-40 was very close to the ratio of C/Si in the molecule of PDMS. The surface properties of the films produced from the core/shell microspheres also were investigated by contact angle method, contrast with the homopolymer of PMMA, the core/shell particles were more effective to form hydrophobic surface and the water repellency on the surface would be better than that of PMMA.  相似文献   

5.
Thermoplastic elastomers (TPEs) are conventionally made of block copolymers or partly cross-linked polymer blends. Alternatively, TPEs can be prepared from structured latices, too. Hard-soft latex particles with a thermoplastic core and an elastomeric shell yield highly extendable elastic films, the strength of which depends sensitively on the relative core size and the particle architecture. Core-shell particles were prepared, by two-step emulsion polymerization, with the thermoplastic polystyrene (PS) in the core and the elastomer polyethylacrylate (PEA) in the shell. PEA particles were synthesized first. The PS cores were then incorporated in them in the second step. This method permits the design of monocore. as well as multicore, particles. These PS-PEA particles were not cross-linked in the core or in the shell. They can be classified as microblends. Compression-molded films of them exhibited, therefore, a coarsened microphase morphology that was, however, still much finer than that of simple melt-mixed blends PS/PEA. The film morphologies of monocore and multicore particles were different as far as the former yielded spherical PS domains, while the latter yielded extended PS clusters. This was strongly reflected by the stress-strain behavior: Films from multicore particles responded in a viscoelastic, rubbery manner, while films from monocore particles behaved like viscous liquids.  相似文献   

6.
A scalable synthesis of magnetic core–shell nanocomposite particles, acting as a novel class of magnetic resonance (MR) contrast agents, has been developed. Each nanocomposite particle consists of a biocompatible chitosan shell and a poly(methyl methacrylate) (PMMA) core where multiple aggregated γ‐Fe2O3 nanoparticles are confined within the hydrophobic core. Properties of the nanocomposite particles including their chemical structure, particle size, size distribution, and morphology, as well as crystallinity of the magnetic nanoparticles and magnetic properties were systematically characterized. Their potential application as an MR contrast agent has been evaluated. Results show that the nanocomposite particles have good stability in biological media and very low cytotoxicity in both L929 mouse fibroblasts (normal cells) and HeLa cells (cervical cancer cells). They also exhibited excellent MR imaging performance with a T2 relaxivity of up to 364 mMFe?1 s?1. An in vivo MR test performed on a naked mouse bearing breast tumor indicates that the nanocomposite particles can localize in both normal liver and tumor tissues. These results suggest that the magnetic core–shell nanocomposite particles are an efficient, inexpensive and safe T2‐weighted MR contrast agent for both liver and tumor MR imaging in cancer therapy.  相似文献   

7.
A method for producing finely dispersed powders of methyl methacrylate (MMA)-styrene copolymer by radical polymerization in a supercritical carbon dioxide medium (SC-CO2) was proposed, studied, and experimentally implemented. The dispersing agent (surfactant), which made it possible to obtain nearly monodisperse size distribution of polymer particles, was poly(dimethylsiloxane methacrylate), a SC-CO2-soluble substance. The copolymer, synthesized with a molecular mass of M w ~ 36000 in the form of spherical particles with a characteristic size of ~1 μm, exhibited a higher thermal stability as compared to poly(methyl methacrylate) with a similar molecular mass. Varying the percentage ratio between MMA and styrene monomers, it was possible effectively control the integral hydrophobicity and physicomechanical characteristics of the methacrylate-styrene copolymer.  相似文献   

8.
The development of new controlled/living radical polymerization processes, such as Atom Transfer Radical Polymerization (ATRP) and other techniques such as nitroxide mediated polymerization and degenerative transfer processes, including RAFT, opened the way to the use of radical polymerization for the synthesis of well-defined, complex functional nanostructures. The development of such nanostructures is primarily dependent on self-assembly of well-defined segmented copolymers. This article describes the fundamentals of ATRP, relevant to the synthesis of such systems. The self-assembly of block copolymers prepared by ATRP is illustrated by three examples. In the first, block copolymers of poly(butyl acrylate) with polyacrylonitrile phase separate, leading to spherical, cylindrical or lamellar morphologies, depending on the block copolymer composition. At a higher temperature, polyacrylonitrile block converts to nanostructured carbon clusters, whereas poly(butyl acrylate) block serves as a sacrificial block, aiding the development of designed nanostructures. In the second example, conductive nanoribbons of poly(n-hexylthiophene) surrounded by a matrix of organic polymers are formed from block copolymers prepared by ATRP. The third example describes an inorganic-organic hybrid system consisting of hard nanocolloidal silica particles (20 nm) grafted by ATRP with well-defined polystyrene-poly(benzyl acrylate) block copolymer chains (1000 chains per particle). Silica cores in this system are surrounded by a rigid polystyrene inner shell and softer polyacrylate outer shell. Received 9 July 2002 Published online: 11 March 2003  相似文献   

9.
 利用微流体技术和双重乳液技术对大直径聚芳亚胺亚胺酮空心微球的制备条件进行了讨论。完成了微球壁厚和直径的控制研究,并讨论了密度不匹配对微球质量的影响。获得了直径0.6~2.0 mm,壁厚5.0~20.0 μm的聚合物微球材料,并对微球制备过程中相分离对聚合物微球形貌的影响进行了分析,结果表明:在聚合物微球外表面易于进行spinodal分相,而在内表面易于进行binodal分相,因此微球内外表面具有不同的形貌结构。同批次制备微球中,平均直径±5%范围内的微球数占88%,球形度大于99%。  相似文献   

10.
The interfacial layer structure of a model incompatible polymer blend system was analyzed using 1H pulse nuclear magnetic resonance (pulse NMR) spectroscopy. Non-crosslinked and crosslinked poly(n-butyl methacrylate) particles with a mean size of ca. 0.9 μm were prepared by seeded emulsion polymerization, and the degree of crosslinking was varied. The particles were powdered using a freeze-dry method and dispersed in poly(vinyl chloride) by melt blending. Dynamic mechanical analysis indicated that the non-crosslinked particles were completely compatible. In contrast, mutual diffusion of the polymer chains in the crosslinked particles was restricted within the particle/matrix interfacial layer. As a result, an incompatible phase structure in which the crosslinked particles were dispersed in the continuous phase was formed. Pulse NMR analysis indicated that the interfacial layer thickness was in the range of 17–98 nm. The thickness decreased with an increase in the degree of crosslinking in the particles. The interfacial layer thickness in the particles was approximately 10 times larger than that for the incompatible polymer pair. Tensile test results indicated that the elongation at break was dependent on the thickness of the interfacial layer. The yield stress was developed for the particles with high hardness that was independent of the interfacial thickness.  相似文献   

11.
Tian-Yi Wang 《中国物理 B》2022,31(7):76107-076107
Rupturing the alumina shell (shell-breaking) is a prerequisite for releasing energy from aluminum powder. Thermal stress overload in a high-temperature environment is an important factor in the rupture of the alumina shell. COMSOL Multiphysics was used to simulate and analyze the shell-breaking response of micron-scale aluminum particles with different particle sizes at 650 ℃ in vacuum. The simulation results show that the thermal stability time and shell-breaking response time of 10 μm-100 μm aluminum particles are 0.15 μs-11.44 μs and 0.08 μs-3.94 μs, respectively. They also reveal the direct causes of shell breaking for aluminum particles with different particle sizes. When the particle size is less than 80 μm, the shell-breaking response is a direct result of compressive stress overload. When the particle size is between 80 μm and 100 μm, the shell-breaking response is a direct result of tensile stress overload. This article provides useful guidance for research into the energy release of aluminum powder.  相似文献   

12.
The core/shell particles consisting of polystyrene core and 3-(methacryloxypropyl)-trimethoxysilane (MPS) shell were prepared in the present study by successive seeding polymerization under kinetically controlled conditions and were characterized by particle size analyser, transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The TEM image indicated that the particles containing organic siloxane presented an evident core/shell structure. Additionally, the study of XPS also revealed that MPS could be grafted onto the surface of polystyrene microspheres and the atomic ratio of C/Si on the surface of the core/shell particles (MPS-40) was very close to the ratio of C/Si in the molecule of MPS. The surface properties of the films produced from the core/shell particles were also investigated by the static contact angle method. Compared with the homopolymer of PS, the core/shell particles were more effective to create hydrophobic surface, so, the introduction of MPS was capable of obvious increase in water repellency.  相似文献   

13.
The synthetic route of unsubstituted polythiophene (PT) nanoparticles was investigated in aqueous dispersion via Fe3+-catalyzed oxidative polymerization. With this new synthetic method, high conversion of thiophene monomers was obtained with only a trace of FeCl3. The dispersion state showed that the PT nanoparticles were well dispersed in many polar solvents, compared to non-polar solvents, such as acetone, chloroform, hexane, and ethyl acetate. To compare the photoluminescence properties between PT nanoparticle dispersion and PT bulk polymers, the PL intensities were measured in the same measuring conditions. Further, core–shell poly(styrene/thiophene) (poly(St/Th)) latex particles were successfully prepared by Fe3+-catalyzed oxidative polymerization during emulsifier-free emulsion polymerization. The different polymerization rates of each monomer resulted in core–shell structure of the poly(St/Th) latex particles. The PL data of the only crumpled shells gave evidence that the shell component of core–shell poly(St/Th) latex particles is indeed PT, which was corroborated by SEM data. PL intensity of the core–shell poly(St/Th) nanoparticle dispersion was much higher than that of the PT nanoparticle dispersion, due to its thin shell layer morphology, which was explained by the self-absorption effect.  相似文献   

14.
Abstract

The microhardness of transparent rubber‐toughened poly(methyl methacrylate) (RTPMMA) was investigated by means of the microindentation technique. Core‐shell particles (CSP) with a rubbery shell were used as reinforcing material for the production of RTPMMA. The increasing volume fraction of CSP within the poly(methyl methacrylate) (PMMA) matrix is shown to soften the material, diminishing the hardness (H) value of RTPMMA of about 40% of the initial value at 35 vol% CSP content. Creep experiments under the indenter are reported. The creep constant is found to increase by adding CSP up to a leveling‐off value. On the other hand, the thermal variation of the creep constant for the blends shows a maximum. Results reveal a good correlation of the glass transition temperature (T g) value deduced from microindentation, and the values obtained from differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) techniques. Contrary to expectation H is shown to decrease with increasing glass transition temperature. In the case of the drawn materials, the indentation anisotropy is shown to gradually increase with draw ratio and CSP content. This finding is explained on the basis of the higher orientation of the PMMA molecules near the periphery of CSP.  相似文献   

15.
The particle size dependence of the Pr2Fe17 nitrogenation process at 400°C is determined by the Mössbauer method. The experimental data are described in terms of a particle model consisting of spherical concentrical shells containing: (i) an expanded central core saturated with 2+ atoms N per formula unit; (ii) an intermediate unnitrided shell with a volume larger than the core by a factor of about 2.4 and accommodating a stress/strain field produced by the expanded core, and (iii) an unnitrogenated undeformed external shell. We observed that small particles (d 10 m and most probably lower) tend to absorb higher nitrogen contents than the large ones. Our results also indicate that some small particles, most probably single crystals, do not nitrogenate.  相似文献   

16.
采用共混法以聚硅氧烷微球作为光散射剂,聚甲基丙烯酸甲酯为基材制备光散射材料.研究了聚硅氧烷微球的粒径与浓度对光散射材料总光透过率与扩散率的影响并与理论模拟值进行了对比分析.研究结果表明,聚硅氧烷微球与聚甲基丙烯酸甲酯折射率匹配良好,较好地解决了光散射材料透光率与扩散率之间的矛盾,实现了高透射与高雾度的双重要求.当微球粒径为5 μm,填充浓度为0.6 wt%时,厚度为1 mm的光散射材料总光透过率为88.5%,扩散率为89.5%.可见光波段总光透过率基本不受光源波长变化影响.选取合适粒径,扩散率随光源波长变化也可降至最低,有效避免了波长色散现象.实验数据与理论模拟结果符合良好.  相似文献   

17.
采用共混法以聚硅氧烷微球作为光散射剂,聚甲基丙烯酸甲酯为基材制备光散射材料.研究了聚硅氧烷微球的粒径与浓度对光散射材料总光透过率与扩散率的影响并与理论模拟值进行了对比分析.研究结果表明,聚硅氧烷微球与聚甲基丙烯酸甲酯折射率匹配良好,较好地解决了光散射材料透光率与扩散率之间的矛盾,实现了高透射与高雾度的双重要求.当微球粒径为5μm,填充浓度为0.6wt%时,厚度为1mm的光散射材料总光透过率为88.5%,扩散率为89.5%.可见光波段总光透过率基本不受光源波长变化影响.选取合适粒径,扩散率随光源波长变化也可降至最低,有效避免了波长色散现象.实验数据与理论模拟结果符合良好.  相似文献   

18.
以乳液聚合法制备的平均粒径1.2~1.5μm单分散聚苯乙烯(PS)微球为核,经过超声敏化、化学镀、还原等过程制备了PS/Ag核壳结构复合微球。采用透射电镜、X射线衍射、红外光谱、紫外可见光谱对其形貌、物相、结构与光学性质进行了表征与分析。结果表明:PS/Ag复合微球粒径相对均一;通过多次敏化、控制二次银氨溶液浓度(0.002~0.006 mol/L),可实现对纳米银壳层厚度的调控;纳米银壳层沉积生长过程中,随着PS微球表面银粒子的增多、增大,复合微球的光学等离子体共振吸收峰产生显著的展宽与红移。  相似文献   

19.
《Composite Interfaces》2013,20(5-7):495-503
Silica/poly(divinylbenzene) (PDVB) composite particles were synthesized by the dispersion polymerization of divinylbenzene (DVB) with ultrafine silica particles in supercritical carbon dioxide (scCO2). Silica particles of average diameter 130 nm were pretreated with 3-(trimethoxysilyl) propyl methacrylate in order to be well dispersed in CO2 and participated in the polymerization. Random copolymeric dispersant, poly(diisopropylaminoethyl methacrylate-co-heptafluorobutyl methacrylate) was used as a stabilizer to provide sufficient stabilization to latexes in scCO2 and the silica/PDVB composite powder was obtained in high yield from the polymerization. SEM analysis revealed that the composite particles prepared at 5% silica loading ratio and 6% stabilizer concentration with respect to monomer have the average diameter of 1.60 μm with uniform and spherical morphology. The composites were also characterized by FTIR spectroscopy and TGA.  相似文献   

20.
In order to reduce the density mismatch between TiO2 and the low dielectric medium and improve the dispersion stability of the electrophoretic particles in the low dielectric medium for electrophoretic display application, polystyrene/titanium dioxide (PS/TiO2) core–shell particles were prepared via in-situ sol–gel method by depositing TiO2 on the PS particle which was positively charged with 2-(methacryloyloxy)ehyl trimethylammonium chloride (DMC). The morphology and average particle size of PS/TiO2 core–shell particles were observed by transmission electron microscopy (TEM), scanning electron microscope (SEM) and particle size analyzer. It was found that density of PS/TiO2 core–shell particles were reduced obviously and the particles can suspend in the low dielectric medium of low density. The PS/TiO2 core–shell particles can endure ultrasonic treatment because of the interaction between TiO2 and PS. Zeta potential and electrophoretic mobility of the fabricated core–shell particles in a low dielectric medium with charge control agent was measured to be −44.3 mV and −6.07 × 10−6 cm2/Vs, respectively, which presents potential in electronic paper application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号