首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
《Composite Interfaces》2013,20(2):103-115
Flax fibers coated with two types and various amounts of silicones are used to make flax-polyurethane composites. Coating conditions have been found to affect strongly the composites properties. The effect of these two types and different amounts of silicone on the impact toughness, flexural strength and modulus, dynamic modulus and loss-energy and notch sensitivity is determined. These properties are compared with results of composites with a strong fiber-matrix adhesion.  相似文献   

2.
Computational studies of damage mechanisms in hierarchical composites, including biocomposites, nanoparticle reinforced polymer composites and other materials are discussed. Different methods of the analysis of hierarchical effects in the multiscale composites are demonstrated, among them, hierarchical fiber bundle model, 3D multiscale finite element models, analytical studies. Considering wood as a gradient, cellular material with layered composite cell walls, one analyzed the effect of wood structure on damage resistance of wood. The influence of nanoparticles distribution in unidirectional polymer matrix composites with secondary nanoreinforcement on the strength and damage resistance of the composites is demonstrated. The concept of nanostructuring of interfaces and grain boundaries as an important reserve of the improvement of the materials properties is formulated.  相似文献   

3.
《Composite Interfaces》2013,20(8-9):659-684
Talc, calcium carbonate (CaCO3), and kaolin hold considerable promise in the development of polymer composites for good mechanical properties and stability. Comparative studies on the usage of these minerals as single fillers in polypropylene (PP) have shown varying degrees of reinforcement due to their differences in terms of particle geometry, surface energy and affinity towards the matrix polymer. In this study, comparisons were made in terms of mechanical, thermal and weatherability properties between hybrid-filler PP composites (i.e. PP filled with either talc–CaCO3 or talc–kaolin hybrid filler combinations), with particular attention directed towards the effect of surface modification of the fillers. The talc/CaCO3 hybrid composites have shown exceptional performance in terms of flexural and impact properties. The contribution of talc in the talc–kaolin hybrid composite system has been significant in terms of enhancing the overall tensile and flexural properties. The ability of silane and titanate coupling agents in boosting the resistance of the composites to severe damage and degradation due to natural weathering has been shown.  相似文献   

4.
Polymer-nanostructured carbon composites (PNCC) using three different polymers as composite matrix materials (polyvinylacetate (PVAc), polyethylene glycol (PEG) and ethylene-vinylacetate copolymer (EVA)) have been developed. High structure carbon black Printex XE2 (Degussa AG) was used as a composites filler. Ethanol vapour sensor-effect of composites was determined as a change of electrical resistance as the composite was held in ethanol vapour for 30 seconds. Reversibility of electrical resistance of PNCC, response stability and repeatability have been measured and compared. The electrical resistance response of EVA-nanostructured carbon composite (EVA-NCC) to ethanol vapour as a function of vinylacetate content in the copolymer has been evaluated. Promising ethanol vapour sensor-effect has been observed for PEG-NCC followed by PVAc-NCC and EVA-NCC.  相似文献   

5.
《Composite Interfaces》2013,20(2-3):207-220
Flax fibers are often used in reinforced composites which have exhibited numerous advantages such as high mechanical properties, low density and biodegradablility. On the other hand, the hydrophilic nature of flax fiber is a major problem. In this study, we prepare the soybean oil based composites reinforced with protein coated and lipid acylated flax fibers and compare their water uptake properties. Results showed that water resistance properties of the composites are improved where treated flax fibers are used. The composite with lipid acylation of the flax fiber exhibited to enhance tensile strength and water resistance properties. Influences of fiber length, fiber loading and pressure on mechanical properties are also reported.  相似文献   

6.
Based on a recently introduced solid-state processing method, a new class of high-temperature BPSCCO (2223) ceramic matrix composites reinforced with MgO whiskers has been developed. The (MgO)w/BPSCCO composites are shown to possess attractive superconducting properties with significantly improved mechanical properties. It is recognized that the superconducting properties of the (MgO)w/BPSCCO HTS composite are related to proper material microstructures achievable by optimizing the processing variables involved, such as repeated hot pressing and annealing, hot-pressing temperature and pressure level, and the length of annealing. In this paper, relationships among superconducting properties and composite processing variables are established. Also, effects of the BPSCCO (2223) phase purity and the MgO whisker reinforcement on superconducting properties of the (MgO)w/BPSCCO composites are discussed. The important issue of the field dependence of superconducting properties of both the monolithic and the composite HTS materials is addressed.  相似文献   

7.
Cold spraying (CS) has been widely explored over the last decade due to its low process temperature and limited thermal effect on spray materials. As a solid-state process, the inherent deficiencies of traditional thermal spraying such as oxidation, decomposition, and grain growth are avoided. This article summarizes the research work on the fabrication of composites and nanostructured coatings by the promising CS process. After a brief introduction to CS and its deposition mechanisms, the preparation methods of spray powders are classified. Different methods are appropriate for particles of various properties, and the tendency is to design composite powders by combined methods in order to create coatings with specified properties. Then, the co-deposition mechanism of composite particles as well as research findings on metal–metal, metal–ceramic, and metal–intermetallic composite coatings are reviewed concerning the deposition characteristics, microstructure and its relation to properties. Moreover, CS has been used to deposit a variety of nanostructured materials, including metals, metal–ceramic composites, and even ceramics, retaining their nanocrystalline nature in the coating without grain growth or phase transformation. Finally, the potential applications of CS and issues to be addressed in coating deposition are discussed.  相似文献   

8.
《Composite Interfaces》2013,20(7):575-586
Lightweight, high mechanical strength insulating materials exhibiting high resistance to corrosion, solvents and abrasive wear are desired for wire and cable insulation as well as protection. Polyethylenes are generally used for such applications owing to their good electrical insulation properties and being inert to solvents at room temperature. However, their abrasion resistance is quite poor. Hence, in the present work, an attempt has been made to improve the abrasive wear resistance of low-density polyethylene (LDPE) by incorporating hollow microspheres, known as cenospheres, in the base polymer to form composites. These cenospheres are obtained from flyash particles, a thermal power plant waste, and do not tend to increase the weight of the polymer composite when used as a filler. The composites were developed by changing the weight fraction of untreated as well as silane treated cenospheres to the extent of 5 wt%. Tribological characterization of these composites was done in abrasive wear mode by varying the operating parameters, such as speed and sliding distance against silicon carbide paper. It was found that 10 wt% silane treated cenosphere filled LDPE composite showed the maximum wear resistance (~×10?11 m3/N m) among the six composites. However, a further increase in filler concentration decreased the wear resistance. The improvement in wear resistance was supported by scanning electron microscopy and attributed to the strong interaction between silane treated cenosphere and LDPE molecules which resisted the elongation and shearing of polymer chains by the abrasive grits.  相似文献   

9.
There has been a growing interest in the utilization of sisal fibres as reinforcement in the production of polymeric composite materials. Natural fibres have gained recognition as reinforcements in fibre polymer–matrix composites because of their mechanical properties and environmental friendliness. The mechanical properties of sisal fibre-reinforced polymer composites have been studied by many researchers and a few of them are discussed in this article. Various fibre treatments, which are carried out in order to improve adhesion, leading to improved mechanical properties, are also discussed in this review paper. This review also focuses on the influence of fibre content and fabrication methods, which can significantly affect the mechanical properties of sisal fibre-reinforced polymer composites.  相似文献   

10.
The influence of the transverse size of a composite wire based on a high-temperature superconductor on the dynamics of its thermoelectrodynamic properties at constant-rate current input has been studied. The physical mechanism behind the formation of stable regimes, which are characterized by the nonuniform distribution of the electric field and transport current over the cross-sectional area of the composite, has been determined. It has been shown that the critical current density of the superconducting composites determined from their current–voltage characteristic have lower and upper boundaries of electric voltages, which outline the allowable measurement range. It has been found that, when the input current completely penetrates into the composite, conditions for its stability are governed by the size effect. The essence of this effect is that conditions for current state stability in superconducting composites with the same cross-sectional area but various cross size differ. The conditions for the absence of unstable states in the composite the cross section of which is partially filled with the transport current have been formulated.  相似文献   

11.
Metal matrix composites reinforced with nano-sized particles have attracted scientific and technological interest due to the enhanced properties exhibited by these coatings. Ni-SiC composites have gained widespread application for the protection of friction parts in the automobile industry. The influence of variables like SiC content, current density and stirring speed on microhardness of nano-composite coatings has been studied. The improved microhardness was associated with the reduction in crystallite size determined by X-ray diffraction studies. The influence of incorporation of nano-SiC in hardened Ni-Co alloy matrix was also studied. It was observed that for 28 wt.% Co content in the matrix the microhardness was higher compared to 70 wt.% for a given nano-SiC content. This was associated to the crystal phase of Ni-28Co-SiC being fcc compared to hcp phase exhibited by Ni-70Co-SiC. The wear resistance of pure Ni, Co and nano-composite coatings was studied using pin-on-disc wear tester under dry sliding condition. The volumetric wear loss indicated that, the wear resistance of Ni-SiC nano-composite is better than that of pure nickel deposit. The wear resistance of Ni-Co composites was observed to be superior to Ni composite. The wear behaviour of Ni and Ni-28Co composite was in accordance with the Archard's law. However, the superior wear characteristic exhibited by Ni-70Co-SiC composite followed the reverse Archard's behaviour.  相似文献   

12.
K.S. Challagulla 《哲学杂志》2013,93(14):1197-1222
A micromechanical model based on the asymptotic homogenization technique has been developed to predict the complete elastic, dielectric and piezoelectric properties of a general 2-2 layered piezoelectric composite where the constituent phases are elastically anisotropic and piezoelectrically active. Two classes of layered piezoelectric composites (i.e. longitudinally and transversely layered) are considered in two widely different ceramic- and polymer-based systems and their effective properties are obtained in the limits of both large-volume (i.e. bulk) and small-volume (i.e. thin-film) systems. It is demonstrated that: (i) in the bulk, ceramic–ceramic layered composite system, the elastic, piezoelectric, and dielectric properties of the composites vary linearly with volume fraction of the second phase, while in the bulk ceramic–polymer layered composite system, the corresponding properties vary non-linearly with volume fraction of the second phase; (ii) in the prismatic (thin-film) layered piezoelectric composite system, the non-vanishing, effective elastic, piezoelectric and dielectric properties vary linearly with the volume fraction of the second phase for both the longitudinally and transversely layered composite structures in the ceramic–ceramic and the ceramic–polymer composite systems; (iii) the ceramic–polymer piezoelectric layered composites that incorporate a low density polymeric phase with lower acoustic impedance generally exhibit enhanced piezoelectric coupling constants and lowered acoustic impedance; (iv) the longitudinally layered composites exhibit higher piezoelectric coupling constants and lower acoustic impedance compared to that of the transversely layered composites; and (v) the best combination of properties for applications such as hydrophones (i.e. the highest piezoelectric coupling constants and the lowest acoustic impedance) is obtained in the ceramic–polymer, longitudinally layered, thin-film, piezoelectric composites.  相似文献   

13.
The results of investigating the effect of nanosize modifiers of a polymer matrix on the nanostructural self-organization of polymer composites and dynamic adaptation of metal–polymer tribosystems, which considerably affect the wear resistance of polymer composite materials, have been analyzed. It has been shown that the physicochemical nanostructural self-organization processes are developed in metal–polymer tribosystems with the formation of thermotropic liquid-crystal structures of the polymer matrix, followed by the transition of the system to the stationary state with a negative feedback that ensures dynamic adaptation of the tribosystem to given operating conditions.  相似文献   

14.
王飞风  张沛红  高铭泽 《物理学报》2014,63(21):217803-217803
将纳米碳化硅填加到硅橡胶中,可以获得具有非线性电导特性的纳米碳化硅/硅橡胶复合物. 本文研究了质量分数分别为5 wt%,15 wt%,30 wt%,45 wt%的纳米碳化硅/硅橡胶复合物的非线性电导特性,建立了电导率与场强的函数关系,分析了复合物的非线性电导机理,并测试了复合物的介电谱特性和击穿特性. 为了探讨非线性碳化硅/硅橡胶复合物应用于电缆终端和复合绝缘子以均匀其电场分布的可能性,应用COMSOL Multiphysics软件,对电缆终端和复合绝缘子中的电场分布进行了仿真分析. 仿真结果表明,将纳米碳化硅/硅橡胶复合物应用于电缆终端应力锥的绝缘部分,以及应用于复合绝缘子的端部,可以有效地降低其最大场强. 关键词: 纳米碳化硅/硅橡胶复合物 非线性电导特性 电场仿真  相似文献   

15.
《Composite Interfaces》2013,20(4):379-409
In composites, debonding at the fiber–matrix interface and matrix cracking due to loading or residual stresses can effect the mechanical properties. Here three different architectures — 3-directional orthogonal, 3-directional 8-harness satin weave and 4-directional in-plane multidirectional composites — are investigated and their effective properties are determined for different volume fractions using unit cell modeling with appropriate periodic boundary conditions. A cohesive zone model (CZM) has been used to simulate the interfacial debonding, and an octahedral shear stress failure criterion is used for the matrix cracking. The debonding and matrix cracking have significant effect on the mechanical properties of the composite. As strain increases, debonding increases, which produces a significant reduction in all the moduli of the composite. In the presence of residual stresses, debonding and resulting deterioration in properties occurs at much lower strains. Debonding accompanied with matrix cracking leads to further deterioration in the properties. The interfacial strength has a significant effect on debonding initiation and mechanical properties in the absence of residual stresses, whereas, in the presence of residual stresses, there is no effect on mechanical properties. A comparison of predicted results with experimental results shows that, while the tensile moduli E 11, E 33and shear modulus G 12 match well, the predicted shear modulus G 13 is much lower.  相似文献   

16.
Thermomechanical ceramics have interesting properties: mainly high hardness, high wear resistance, good chemical resistance, good mechanical strength at high temperatures and generally low thermal conductivity. But, the engineering use of ceramics as structural parts is at the moment limited by their inherent brittleness. The toughness values of ceramics are between about to 5 MPa √m whereas the toughness values of metals are much higher (from 20 to 200 MPa √m). To avoid this brittleness, composite ceramics have to be used. Two types of composite materials can be developed: particle-reinforced composites and fiber-reinforced composites. In this paper, some examples of reinforcement of ceramics are presented. Two cases will be developed: second-phase reinforcement with zirconia particles or other particles, and the composites reinforced by fibers or whiskers.  相似文献   

17.
Abaca fibers show tremendous potential as reinforcing components in composite materials. The purpose of this study is to investigate the effect of abaca fiber content on physical, mechanical and tribological properties of abaca fiber reinforced friction composites. The friction composites were fabricated by a compression molder and investigated using a friction test machine. The experiment results show that surface treatment of abaca fibers could improve the mechanical properties of abaca fiber and interface bonding strength of the abaca fiber and composite matrix. Density of friction composites decreased with the increasing of abaca fiber content (0 wt%–4 wt%). The different content of abaca fibers had less effect on hardness of specimens, whereas large of impact strength. The specimen F3 with 3 wt% abaca fibers had the lowest wear rate and possessed the best wear resistance, followed by specimen F4 with 4 wt% abaca fibers. The worn surface morphologies were observed using the Scanning Electron Microscopy for study the tribological behavior and wear mechanism. The results show that a large amount of secondary contact plateaus presented on the worn surface of specimen F3 which had relatively smooth worn surface.  相似文献   

18.
Polyaniline (PANI)/TiO2 composite is prepared by in situ polymerization of polyaniline on the surface of TiO2 template obtained by the sol-gel process via cotton template. The TiO2 microbelts are prepared by sol-gel method using the absorbent cotton as template for the first time. Then the TiO2 microtubules are used as template for the preparation of polyaniline/TiO2 composites. The structure, morphology and properties of the composites are characterized with scanning electron microscope (SEM), IR, Net-wok Analyzer. A possible formation mechanism of TiO2 microtubules and polyaniline/TiO2 composites has been proposed. The effect of the mol ratio of polyaniline/TiO2 on the microwave loss properties and photocatalysis properties of the composites is investigated.  相似文献   

19.
The effect of compatibilizer types and concentrations on the mechanical properties and morphology of Pithecellobium Clypearia Benth Fiber (PCBF)/recycled ABS composites prepared by a vane extruder were characterized. In addition, the percentage of compatibilizer was fixed at 8%, and the effect of lubricant concentrations on the mechanical properties and torque behaviors of the composites was also studied. Maleic anhydride grafted ABS (ABS-g-MAH) and maleic anhydride grafted PS (PS-g-MAH) were used as compatibilizers; the lubricant used was Struktol TPW 604 (blend of aliphatic carboxylic acid salts and mono diamides). The composite with 8% ABS-g-MAH showed superior mechanical properties compared to the composite without compatibilizer and the 8% PS-g-MAH compatibilized composites. Compared with PS-g-MAH, ABS-g-MAH was more effective for the composites to improve the interfacial interaction and mechanical properties. The comprehensive mechanical properties of PCBF/recycled ABS composite filled with 4% lubricant were better than the composites without lubricant and the composites with any other content of TPW 604. Moreover, the torque of the composites in an internal mixer decreased with an increasing lubricant content.  相似文献   

20.
The electrical properties of a polymer composite with carbon nanotube additives have been analyzed. The state of the system near the percolation threshold, when charge is transferred along a single percolation path, has been considered. For this state, the current–voltage characteristics of a percolation chain made up of carbon nanotubes have been calculated under the assumption that the contact resistance between neighboring nanotubes is much higher than the intrinsic resistance of the nanotubes. According to recent data, the distance between neighboring (contacting) nanotubes has been assumed to be randomly distributed. It has been shown that, under the given conditions, the current–voltage characteristic is essentially nonlinear. This indicates the nonohmic conductivity of the composites. The dependence of the current–voltage characteristic on the spread of the contact distribution over distances has been discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号