首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Composite Interfaces》2013,20(7):489-513
Interfacial adhesion of sisal/coir hybrid fibre reinforced natural rubber (NR) composites has been characterized by restricted equilibrium swelling technique with special reference to the effects of fibre loading, orientation and bonding agent. The swelling parameters of NR composites with and without bonding agent were evaluated with three aromatic solvents, namely; benzene, toluene and xylene, by a sorption gravimetric method. As fibre content and penetrant size increase, the solvent uptake has been found to decrease due to the increased hindrance and good fibre–rubber interaction. The bonding agent added mixes showed enhanced restriction to swelling and it is seen that the ratio of change in volume fraction of rubber before and after swelling to the volume fraction of rubber before swelling (V 0V r/V 0) is lower for bonding agent added composites, when compared to an unbonded one. The anisotropic swelling studies were carried out to analyse the extent of fibre alignment and fibre–matrix interaction. In strongly bonded composites, the swelling has been mainly observed to take place in the thickness direction, as attested by optical photographs. The rubber–fibre interaction has also been examined by Lorenz–Parks and Kraus equations.  相似文献   

2.
《Composite Interfaces》2013,20(5):527-548
Short nylon-6 fibre reinforced acrylonitrile butadiene rubber (NBR) composites were prepared and the interfacial adhesion was evaluated by the restricted solvent swelling technique. The solvents used were N,N-dimethyl formamide (DMF), dimethyl sulphoxide (DMSO) and acetonitrile. As the fibre content increased, the solvent uptake decreased, which has been attributed to the increased hindrance to solvent penetration due to better fibre–rubber interaction. It was observed that the ratio of change in volume fraction of rubber before and after swelling to the volume fraction of rubber before swelling (V 0V r/V 0) was lower for a bonding agent added composite, compared to the unbonded one. Anisotropic swelling studies were carried out to analyze the extent of fibre alignment and fibre–matrix interaction. It was seen that in strongly bonded composites, the swelling mainly took place in the thickness direction. The rubber–fibre interaction has also been examined by the Lorenz–Parks and Kraus equations.  相似文献   

3.
《Composite Interfaces》2013,20(7-9):763-786
The dielectric properties, such as dielectric constant, volume resistivity and dielectric loss factor, of sisal/coir hybrid fibre reinforced natural rubber composites have been studied as a function of fibre loading, fibre ratio, frequency, chemical modification of fibres and the presence of a bonding agent. The dielectric constant values have been found to be higher for fibre filled systems than pure natural rubber. This has been attributed to the polarization exerted by the incorporation of fibres into the matrix. Dielectric constant values were observed to be decreased with increase in frequency due to the decreased interfacial and orientation polarization at higher frequencies. Whereas dielectric constant increases with fibre loading because of the increment in number of polar groups after the addition of hydrophilic lignocellulosic fibres. The volume resistivity of the composites was found to be decreased with fibre loading and a percolation threshold has been obtained at 15.6% volume of fibres. Fibre treatment, such as alkali, acetylation, benzoylation, peroxide and permanganate, were carried out to improve the adhesion between fibres and matrix. The dielectric constant values were lower for systems consisting of fibres subjected to chemical treatments due to the increased hydrophobicity of fibres. The addition of a two-component dry bonding agent consisting of hexamethylene tetramine and resorcinol, used for the improvement of interfacial adhesion between the matrix and fibres, reduced the dielectric constant of the composites. When the weight percentage of sisal fibre was increased in the total fibre content of the hybrid composites, the dielectric constant was found to increase. The added fibres and different chemical treatments for them increased the dielectric dissipation factor. A dielectric relaxation has been observed at a frequency of 5 MHz.  相似文献   

4.
《Composite Interfaces》2013,20(7-9):631-646
Unidirectional isora fibre reinforced polyester composites were prepared by compression moulding. Isora is a natural bast fibre separated from the Helicteres isora plant by a retting process. The effect of alkali treatment on the thermal properties of the fibre was studied using TGA, DTA and DSC in oxygen and nitrogen atmosphere. Mechanical properties like tensile strength, Young's modulus, flexural strength, flexural modulus and impact strength of the composites containing untreated and alkali-treated fibres have been studied as a function of fibre loading. The optimum loading for tensile properties of the composite containing untreated fibre was found to be 45% by volume and on alkalization of the fibre, the optimum loading increased to 66%. For flexural properties the loading was optimized at about 56% and 66%, for the composites containing untreated and alkali treated fibres, respectively. From DMA studies it was observed that the alkali-treated fibre composites have higher E′ and E″ values compared to untreated fibre composites. From swelling studies in styrene it was observed that the mole percent uptake of the solvent by the treated fibre composites is less than by the untreated fibre composites. From these results it can be concluded that in composites containing alkalized fibres there is enhanced interfacial adhesion between the fibre and the matrix leading to better properties, compared to untreated fibre composites.  相似文献   

5.
Carbon nanotubes as reinforcement of styrene-butadiene rubber   总被引:1,自引:0,他引:1  
This study reports an easy technique to produce cured styrene-butadiene rubber (SBR)/multi-walled carbon nanotubes (MWCNT) composites with a sulphur/accelerator system at 150 °C. Significant improvement in Young's modulus and tensile strength were achieved by incorporating 0.66 wt% of filler without sacrificing SBR elastomer high elongation at break. A comparison with carbon black filled SBR was also made. Field emission scanning electron microscopy was used to investigate dispersion and fracture surfaces. Results indicated that the homogeneous dispersion of MWCNT throughout SBR matrix and strong interfacial adhesion between oxidized MWCNT and the matrix are responsible for the considerable enhancement of mechanical properties of the composite.  相似文献   

6.
《Composite Interfaces》2013,20(4-5):451-473
Silica reinforcing fillers were generated using the sol-gel approach and their surfaces were modified using either a vinyl alkoxysilane (to provide permanent bonding to a host poly(dimethylsiloxane) elastomer), or a hemiacetal ester (to provide bonding that could be thermally ruptured). The surface areas of the fillers were measured by nitrogen absorption, and their morphologies, interfacial structures, and crosslinking to the elastomer were characterized by ultra small angle and small angle X-ray scattering, scanning electron microcopy, and Fourier-transform infrared spectroscopy. Increasing the amount of the silane coupling agent decreased silica domain sizes, with corresponding increases in surface area and stronger filler-polymer interactions. Vinyltrimethoxysilane had a larger effect than vinylmethyldimethoxysilane. The tensile moduli, tensile strengths, and degrees of toughness of the composites were determined using stress-strain measurements in elongation, both under near-equilibrium conditions and under continuous extension. The permanently bonded modifications gave composites with improved mechanical properties. Rupturing the hemiacetal ester bonding at 120-150°C gave some increase in ultimate stress, maximum elongation, and toughness, thus underscoring the importance of interactions or 'networking' between filler particles.  相似文献   

7.
《Composite Interfaces》2013,20(6):571-583
Carboxylated nitrile butadiene rubber (XNBR)–based nanocomposites with varying amounts of nanokaolin were produced by latex stage mixing. Sonication of the unmodified kaolin and the technique adopted for the preparation of the composite have helped to get a uniform dispersion of clay in XNBR matrix. Nanokaolin caused enhancement in the mechanical properties of the composites. Proper dispersion of the clay particles, partial exfoliation/intercalation of clay, and interaction of clay with the polar rubber latex made nanokaolin good reinforcing filler in XNBR latex. Swelling studies conducted in methyl ethyl ketone showed a decrease in the swelling index and solvent uptake confirming the hindrance exerted by clay and the possible clay–rubber interaction. Increase in complex modulus obtained from the strain sweep analysis is a further evidence for better rubber filler interaction. The composites were characterized by the scanning electron microscopy, X-ray diffraction analysis, and atomic force microscopy.  相似文献   

8.
《Composite Interfaces》2013,20(4-6):377-390
This paper reports the use of a natural fibre, isora, as reinforcement in unsaturated polyester resin. Isora is a bast fibre separated from the bark of Helicteres isora plant by retting process. Properties like tensile strength, flexural strength etc. have been studied as a function of fibre length and fibre loading using treated and untreated fibre. The mechanical properties were found to be optimum at a fibre length of 30 mm and a fibre loading of 30% by volume. The effects of alkali treatment on the fibre properties were investigated by SEM, IR and TGA. The mechanical performance of the treated isora fibre-reinforced polyester composites has also been investigated. SEM studies were carried out to investigate the fibre surface morphology, fibre pull-out and fibre–polyester interface bonding. SEM gave evidence for the changes that had occurred on the fibre surface during chemical treatment. The properties were found to be superior for the composite reinforced with treated fibre compared to the untreated fibre.  相似文献   

9.
Abstract

Nanoparticles of zinc oxide were synthesized by a solution combustion method. The average size of these particles was analyzed by using X-ray diffraction. Composites of natural rubber and the ZnO nanoparticles were prepared by a latex blending method. The matrix phase was cured by using the crosslinking agent, pentane-1,5-diylidenediamine. Effects of crosslinking and incorporation of nanoparticles on the tensile and solvent transport properties of the natural rubber were studied in detail. The nature of the dispersion of the nanoparticles was analyzed by scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). It was observed from the tensile studies that the addition of the curing agent and the ZnO nanoparticles increased the stability considerably. Incorporation of the nanoparticles also considerably increased the solvent resistance of the cured natural rubber. We suggest the addition of ZnO nanoparticles at a low loading level provided better properties compared to other reinforcements, such as carbon black and nano-clay.  相似文献   

10.
《Composite Interfaces》2013,20(8):743-755
Epoxy formulations based on the multi-functional amine hardener, dicyandiamide (Dicy), regularly contain a free accelerator for reducing the curing temperature and the time needed to complete the network formation. Unfortunately, all accelerators reduce the shelf life of these adhesives at 25°C. In order to solve this problem, accelerator-loaded zeolites fillers were developed, optimised with respect to host–guest interactions and characterised by Fraunhofer IFAM (Bremen, Germany) with regard to the release and curing behaviour in epoxy adhesive formulations. They are added to an epoxy adhesive (diglycidylether of bisphenol A (EP) and dicyandiamide (Dicy), mass ratio 100:6.7), stored at 25°C in regular air or cured (heated with β = 10 K/min to 170°C subsequent isothermal curing for 45 min). That shelf life and curing behaviour are investigated by FT-IR spectroscopy and modulated DSC. Compared to the EP containing free accelerator, the zeolite-filled EP possesses a threefold increase in shelf life at 25°C due to the immobilization of the accelerator in the pores of the zeolites. While the free accelerator acts steadily during heating, it is shown that the loaded zeolite releases the accelerator at about 76°C. Surprisingly, the released accelerator is not only involved in the chemical formation of the epoxy network but it accelerates the dissolution of Dicy considerably. As the result, network formation at 170°C finishes after not more than 19 min and the starting temperature for curing could be reduced to 140°C.  相似文献   

11.
Single crystalline Al2O3 fibres (sapphire), coated with the NiAl alloy IP75 by physical vapour deposition (PVD), were assembled to fabricate composites by means of diffusion bonding. The microstructure and chemistry of both as-coated fibre and as-diffusion bonded composites were investigated by electron microscopy and microanalysis. The interface shear stress for complete debonding was measured by fibre push-out tests at room temperature, and the composite tensile strength was measured at 900°C and 1100°C. An amorphous layer with a thickness of about 400?nm formed between the fibre and the matrix during the PVD process and was maintained during diffusion bonding. A Laves phase precipitated along NiAl grain boundaries in the IP75 matrix. This caused a lower tensile strength of the IP75/Al2O3 composite at high temperatures compared to as-cast monolithic IP75 and rendered the composite useless for structural applications.  相似文献   

12.
Rice husk is rich in amorphous silica which has found various applications as a filler in rubbers and plastics. In the research described here silica was extracted from rice husk ash in the form of sodium silicate which was used to produced amorphous precipitated silica (PS) and silica aerogel (SA) using a sol – gel process and supercritical drying. These materials were then physically mixed with unsaturated polyester (UP) resin and cured at room temperature to form polymer composites. The experimental results showed that the UP composites with 30% (volume percent) of SA filler had lower density and better thermal insulation than the composites with the same amount of PS. Thermogravimetric analysis (TGA) results showed that the Tonset of the PS and SA composites were slightly delayed by 15 and 10°C, respectively. The tensile stress-strain curves showed that addition of the fillers reduced the tensile strength, but increased the elastic moduli of the UP matrix. PS filled UP composites exhibit higher moduli (higher stiffness) than that of SA filled UP composites. This was due to agglomeration and poor adhesion of the SA particles to the UP matrix while better dispersion was observed for the PS filled composite.  相似文献   

13.
研究了导电炭黑40b2填充天然橡胶复合材料的导热性能和力学性能随炭黑体积分数的变化规律,并采用扫描电子显微镜观察了炭黑橡胶体系内部的炭黑分布状况.结果表明,导热性能随炭黑体积分数的变化规律存在类似于导电逾渗现象的导热逾渗现象,逾渗阈值在8.3%~13.63%之间.在逾渗阈值之后,复合材料的拉伸强度下降.炭黑橡胶复合材料...  相似文献   

14.
ABSTRACT

This work investigated the mechanical, physical, morphological, and electrical (volume) resistivity properties of radiation-vulcanized natural rubber latex (RVNRL) with additions of waste eggshell (WES) powder, which contained primarily CaCO3 (calcite). The results showed that increasing gamma irradiation doses from 0 to 30?kGy in 10-kGy increments led to decreases in the swelling ratio and elongation at break but increases in the crosslink density, tensile modulus at 500% elongation, and tensile strength of the composites. The results also suggested that increasing the WES contents from 0 to 2, 4, or 6 parts per hundred parts of rubber by weight (phr) in the composites improved the tensile modulus at 500% elongation, tensile strength, hardness (Shore A), and electrical (volume) resistivity. In addition, after undergoing thermal aging at 70°C for 96?h, the tensile modulus and hardness (Shore A) increased, while the tensile strength and elongation at break decreased. This work also compared the properties of WES/RVNRL with commercial CaCO3/RVNRL samples at the same 4-phr content. The results indicated that both composites had similar tensile properties, implying possible replacement of commercial CaCO3 with WES powder as an effective reinforcing filler in RVNRL.  相似文献   

15.
Physical properties of rubber compounds are affected by the filler–rubber interaction, filler dispersion in the rubber matrix, and cross-link structure formed during vulcanization. In particular, the cross-link structure is closely related to the physical properties of vulcanizates and has been analyzed using the swelling test and Flory-Rehner equation. However, the relationship between the structure and physical properties of vulcanizates cannot be explained by the cross-link density obtained using these methods. The cross-link density obtained from the swelling test is a complex result of the filler–rubber interaction occurring during the compounding as well as the chemical cross-link structure formed by sulfur during the vulcanization. Moreover, the rubber vulcanizates that use silica need to be separately analyzed for each factor as its physical properties are affected more by the filler–rubber interaction than by carbon black. Therefore, this study determines the factors that contribute to the total cross-link density of vulcanizates into chemical cross-link density and filler–rubber interaction via quantitative analysis using the swelling test results and Flory-Rehner and Kraus equations. The vulcanizates used for the analysis were carbon black-filled and silica-filled non-functionalized SSBR compounds with varying cure accelerator for each filler loading. Their chemical cross-link density was measured and the effect of the filler–rubber interactions on their mechanical and dynamic viscoelastic properties was investigated. Furthermore, the relationship between the structure and physical properties of rubber vulcanizates was elucidated.  相似文献   

16.
钢渣作为炼钢过程中产生的固体废弃物,矿渣作为高炉炼铁过程中的副产品,其存在难以利用与附加值的问题。面对上述问题,利用钢渣与矿渣开发一种价格低廉的复合橡胶填料用于橡胶领域。采用磁选热闷渣、未磁选热闷渣、矿粉和助磨-改性复合剂制备改性钢渣-矿粉复合橡胶填料,并且用于复合橡胶体系。研究磁选热闷渣用量、未磁选热闷渣用量、矿粉用量和助磨-改性复合剂用量对改性钢渣-矿粉基橡胶复合材料性能的影响,并且分析其影响机理。结果表明,以磁选热闷渣用量150 g、未磁选热闷渣用量150 g、矿粉用量150 g和助磨-改性复合剂用量9 g制备的改性钢渣-矿粉复合橡胶填料补强-阻燃性能最优。按改性钢渣-矿粉复合橡胶填料∶炭黑质量比20∶30制备的改性钢渣-矿粉基橡胶复合材料,其拉伸强度为21.83 MPa、撕裂强度为46.23 kN·m-1、邵尔A硬度为62、磨耗量为159 mm3、极限氧指数为19.8%与燃尽时间为187 s。助磨-改性复合剂不仅降低粒径尺寸、提高粒径均匀性,而且改善钢渣-矿粉复合橡胶填料的表面结构与性质,有利于改性钢渣-矿粉复合橡胶填料在复合橡胶体系中均匀分散,提高相容性。钢渣与矿粉在助磨-改性复合剂的作用下发生化学反应,改变了钢渣与矿粉的物相组成,提高补强性能与阻燃性能。  相似文献   

17.
Recently, many studies have been conducted on exploitation of natural materials for modern product development and bioengineering applications. Apart from plant-based materials (such as sisal, hemp, jute, bamboo and palm fibre), animal-based fibre is a kind of sustainable natural materials for making novel composites. Silkworm silk fibre extracted from cocoon has been well recognized as a promising material for bio-medical engineering applications because of its superior mechanical and bioresorbable properties. However, when producing silk fibre reinforced biodegradable/bioresorbable polymer composites, hydrophilic sericin has been found to cause poor interfacial bonding with most polymers and thus, it results in affecting the resultant properties of the composites. Besides, sericin layers on fibroin surface may also cause an adverse effect towards biocompatibility and hypersensitivity to silk for implant applications. Therefore, a proper pre-treatment should be done for sericin removal. Degumming is a surface modification process which allows a wide control of the silk fibre's properties, making the silk fibre possible to be used for the development and production of novel bio-composites with unique/specific mechanical and biodegradable properties. In this paper, a cleaner and environmentally friendly surface modification technique for tussah silk in polymer based composites is proposed. The effectiveness of different degumming parameters including degumming time and temperature on tussah silk is discussed through the analyses of their mechanical and morphological properties. Based on results obtained, it was found that the mechanical properties of tussah silk are affected by the degumming time due to the change of the fibre structure and fibroin alignment.  相似文献   

18.
Results obtained from a series of experimental investigations are described in which an elastic polyisoprene hemisphere and elastic rubber cones of included angles 60°, 90°, 120° and 150° were loaded normally on to smooth blocks of soda–lime glass and polydimethylsiloxane (PDMS) containing 10% and 20% by volume of the curing agent. The load versus displacement data were continuously recorded with an instrumented indentation machine. It is shown that, whereas the loading behaviour of the hemisphere on to the blocks of the soda–lime glass and PDMS closely follows the theory of Hertz (see equation (1)), the load versus displacement behaviour of the rubber cones of included angles 60°, 90° and 120° could not be fitted by the Sneddon equation (see equation (5)) for rigid conical indenters loading on to an elastic half-space or by the modified Sneddon equation (see equation (6)) employing the combined moduli of the indenter and the half-space. The discrepancy between the predictions of the modified Sneddon equation and the experimental measurements is very significant, thus confirming our recent concern about the validity of using the modified Sneddon equation for analysing the experimental data obtained from nanoindentation experiments. Estimates of the errors caused by the use of the modified Sneddon equation have been made to further illustrate our contention. On the other hand, the behaviour of the 150° included angle cone loading on to the blocks of rubber, PDMS (1?:?10) and PDMS (1?:?20), has been shown to be particularly striking, as the rubber cone behaved as if it were rigid; moreover, the experimental data are well fitted by the Sneddon equation corresponding to a 150° rigid cone loading on to an elastic half-space. Finally, it has been proposed that, in order to determine the elastic modulus of a very stiff solid (i.e. Young's modulus close to that of the indenter) correctly using the technique of instrumented indentation, including nanoindentation, the included angle of the indenter, made of diamond, should be 150° and the measured load versus displacement data should be analysed using the Sneddon equation corresponding to a rigid cone of an included angle of 150°.  相似文献   

19.
In this work, carbon fibres were sized with different emulsifier content sizing agent in order to improve the performances of carbon fibres and the interface of carbon fibres composites. The surface characteristic changing after modification was investigated by scanning electron microscopy (SEM), atomic force microscopy (AFM). Wetting and surface energy along with contact angles were determined by the dynamic contact angle analysis test (DCAT). At the same time, the single fibre strengths and weibull distributions were also studied in order to understand the effect of the emulsifier content of sizing agent on the carbon fibres. The interfacial shear strength and hygrothermal ageing of the composites were measured which showed a different enhancement, respectively. The results revealed that sizing agent E-3 showed better interface adhesion between fibres and matrix and sizing agent E-2 sized carbon fibre has better ageing resistant properties.  相似文献   

20.
《Composite Interfaces》2013,20(2):99-116
The paper describes surface treatment methods to improve adhesion between copper and vinyl ester in glass fiber–vinyl ester composites. Surface treatment methods were developed for commercially available copper that was optimized for epoxies and adhesion performance was compared based on 90° peel strength measurements. Four surface treatments for copper were tested: (i) co-cured Epon/vinyl ester; (ii) fully cured Epon; (iii) epoxy film adhesive; and (iv) γ-MPS silane along with two baseline systems: copper/vinyl ester and copper/epoxy. Measured average peel strengths for the surface treatments were 21%, 101%, 110% and 91% of the baseline copper/vinyl ester system, respectively. Compared to the copper/epoxy system, fully cured Epon, epoxy film adhesive and the silane treatment generated comparable adhesion between copper and vinyl ester. For all samples tested, mixed cohesive/adhesive failure modes were observed. Overall, the surface treatment with the silane coupling agent is the most appropriate method for obtaining comparable and uniform performance compared to copper/glass fiber/epoxy system (FR4 materials).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号