首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
To mimic the charge separation in functional proteins we studied flavin-modified peptides as models. They were synthesized as oligoprolines that typically form a polyproline type-II helix, because this secondary structure supports the electron transfer properties. We placed the flavin as photoexcitable chromophore and electron acceptor at the N-terminus. Tryptophans were placed as electron donors to direct the electron transfer over 0–3 intervening prolines. Spectroscopic studies revealed competitive photophysical pathways. The reference peptide without tryptophan shows dominant non-specific ET dynamics, leading to an ion pair formation, whereas peptides with tryptophans have weak non-specific ET and intensified directed electron transfer. By different excitation wavelengths, we can conclude that the corresponding ion pair state of flavin within the peptide environment has to be energetically located between the S1 and S4 states, whereas the directed electron transfer to tryptophan occurs directly from the S1 state. These photochemical results have fundamental significance for proteins with flavin as redoxactive cofactor.  相似文献   

2.
We have synthesized and characterized a new class of heme-peptide complexes using disulfide-linked hairpin-turn and cyclic peptides and compared these to their linear analogues. The binding affinities, helicities, and mechanism of binding of linear, hairpin, and cyclic peptides to [FeIII(coproporphyrin-I)]+ have been determined. In a minimalist approach, we utilize amphiphilic peptide sequences (15-mers), where a central histidine provides heme ligation, and the hydrophobic effect is used to optimize heme-peptide complex stability. We have incorporated disulfide bridges between amphiphilic peptides to make hairpin and even cyclic peptides that bind heme extremely well, roughly 5 x 106 times more strongly than histidine itself. CD studies show that the cyclic peptide heme complexes are completely alpha-helical. NMR spectra of paramagnetic complexes of the peptides show that the 15-mer peptides bind sequentially, with an observable monopeptide, high-spin intermediate. In contrast, the cyclic peptide complexes ligate both imidazoles cooperatively to the heme, producing only a low-spin complex. Electrochemical measurements of the E1/2 of the FeIII(coproporphyrin-I)+ complexes of these peptides are all at fairly low potentials, ranging from -215 to -252 mV versus NHE at pH 7.  相似文献   

3.
We show that simply designed amphiphilic 4-helix bundle peptides can be utilized to vectorially orient a linearly extended donor-bridge-acceptor (D-br-A) electron transfer (ET) chromophore within its core. The bundle's interior is shown to provide a unique solvation environment for the D-br-A assembly not accessible in conventional solvents and thereby control the magnitudes of both light-induced ET and thermal charge recombination rate constants. The amphiphilicity of the bundle's exterior was employed to vectorially orient the peptide-chromophore complex at a liquid-gas interface, and its ends were tailored for subsequent covalent attachment to an inorganic surface, via a "directed assembly" approach. Structural data, combined with evaluation of the excited state dynamics exhibited by these peptide-chromophore complexes, demonstrate that densely packed, acentrically ordered 2-D monolayer ensembles of such complexes at high in-plane chromophore densities approaching 1/200 ?(2) offer unique potential as active layers in binary heterojunction photovoltaic devices.  相似文献   

4.
We present a broad study of the effect of neutralizing the two negative charges of the Mb propionates on the interaction and electron transfer (ET) between horse Mb and bovine cyt b(5), through use of Zn-substituted Mb (ZnMb, 1) to study the photoinitiated reaction, ((3)ZnP)Mb + Fe(3+)cyt b(5) --> (ZnP)(+)Mb + Fe(2+)cyt b(5). The charge neutralization has been carried out both by replacing the Mb heme with zinc-deuteroporphyrin dimethylester (ZnMb(dme), 2), which replaces the charges by small neutral hydrophobic patches, and also by replacement with the newly prepared zinc-deuteroporphyrin diamide (ZnMb(diamide), 3), which converts the charged groups to neutral, hydrophilic ones. The effect of propionate neutralization on the conformation of the zinc-porphyrin in the Mb heme pocket has been studied by multinuclear NMR with an (15)N labeled zinc porphyrin derivative (ZnMb((15)N-diamide), 4). The rates of photoinitiated ET between the Mb's (1-3) and cyt b(5) have been measured over a range of pH values and ionic strengths. Isothermal titration calorimetry (ITC) and NMR methods have been used to independently investigate the effect of charge neutralization on Mb/b(5) binding. The neutralization of the two heme propionates of ZnMb by formation of the heme diester or, for the first time, the diamide increases the second-order rate constant of the ET reaction between ZnMb and cyt b(5) by as much as several 100-fold, depending on pH and ionic strength, while causing negligible changes in binding affinity. Brownian dynamic (BD) simulations and ET pathway calculations provide insight into the protein docking and ET process. The results support a new "dynamic docking" paradigm for protein-protein reactions in which numerous weakly bound conformations of the docked complex contribute to the binding of cyt b(5) to Mb and Hb, but only a very small subset of these are ET active, and this subset does not include the conformations most favorable for binding; the Mb surface is a large "target" with a small "bullseye" for the cyt b(5) "arrow". This paradigm differs sharply from the more familiar, "simple" docking within a single, or narrow range of conformations, where binding strength and ET reactivity increase in parallel. Likewise, it is distinct from, although complementary to, the well-known picture of conformational control of ET through "gating", or a related picture of "conformational coupling". The new model describes situations in which tight binding does not correlate with efficient ET reactivity, and explains how it is possible to modulate reactivity without changing affinity. Such "decoupling" of reactivity from binding clearly is of physiological relevance for the reduction of met-Mb in muscle and of met-Hb in a red cell, where tight binding of cyt b(5) to the high concentration of ferrous-Mb/Hb would prevent the cytochrome from finding and reducing the oxidized proteins; it likely is of physiological relevance in other situations, as well.  相似文献   

5.
To address the role of the secondary hydroxyl group of heme a/o in heme-copper oxidases, we incorporated Fe(III)-2,4 (4,2) hydroxyethyl vinyl deuterioporphyrin IX, as a heme o mimic, into the engineered heme-copper center in myoglobin (sperm whale myoglobin L29H/F43H, called Cu(B)Mb). The only difference between the heme b of myoglobin and the heme o mimic is the substitution of one of the vinyl side chains of the former with a hydroxyethyl group of the latter. This substitution resulted in an approximately 4 nm blue shift in the Soret band and approximately 20 mV decrease in the heme reduction potential. In a control experiment, the heme b in Cu(B)Mb was also replaced with a mesoheme, which resulted in an approximately 13 nm blue shift and approximately 30 mV decrease in the heme reduction potential. Kinetic studies of the heme o mimic-substituted Cu(B)Mb showed significantly different reactivity toward copper-dependent oxygen reduction from that of the b-type Cu(B)Mb. In reaction with O2, Cu(B)Mb with a native heme b showed heme oxygenase activity by generating verdoheme in the presence of Cu(I). This heme degradation reaction was slowed by approximately 19-fold in the heme o mimic-substituted Cu(B)Mb (from 0.028 s(-1) to 0.0015 s(-1)), while the mesoheme-substituted Cu(B)Mb shared a similar heme degradation rate with that of Cu(B)Mb (0.023 s(-1)). No correlation was found between the heme reduction potential and its O2 reactivity. These results strongly suggest the critical role of the hydroxyl group of heme o in modulating heme-copper oxidase activity through participation in an extra hydrogen-bonding network.  相似文献   

6.
The formation of a noncovalent triblock copolymer based on a coiled-coil peptide motif is demonstrated in solution. A specific peptide pair (E and K) able to assemble into heterocoiled coils was chosen as the middle block of the polymer and conjugated to poly(ethylene glycol) (PEG) and polystyrene (PS) as the outer blocks. Mixing equimolar amounts of the polymer-peptide block copolymers PS-E and K-PEG resulted in the formation of coiled-coil complexes between the peptides and subsequently in the formation of the amphiphilic triblock copolymer PS-E/K-PEG. Aqueous self-assembly of the separate peptides (E and K), the block copolymers (PS-E and K-PEG), and equimolar mixtures thereof was studied by circular dichroism, dynamic light scattering, and cryogenic transmission electron microscopy. It was found that the noncovalent PS-E/K-PEG copolymer assembled into rodlike micelles, while in all other cases, spherical micelles were observed. Temperature-dependent studies revealed the reversible nature of the coiled-coil complex and the influence of this on the morphology of the aggregate. A possible mechanism for these transitions based on the interfacial free energy and the free energy of the hydrophobic blocks is discussed. The self-assembly of the polymer-peptide conjugates is compared to that of polystyrene-b-poly(ethylene glycol), emphasizing the importance of the coiled-coil peptide block in determining micellar structure and dynamic behavior.  相似文献   

7.
Horse myoglobin (Mb) provides a convenient "workbench" for probing the effects of electrostatics on binding and reactivity in the dynamic [Mb, cytochrome b(5)] electron-transfer (ET) complex. We have combined mutagenesis and heme neutralization to prepare a suite of six Mb surface-charge variants: the [S92D]Mb and [V67R]Mb mutants introduce additional charges on the "front" face, and incorporation of the heme di-ester into each of these neutralizes the charge on the heme propionates which further increases the positive charge on the "front" face. For this set of mutants, the nominal charge of Mb changes by -1 to +3 units relative to that for native Mb. For each member of this set, we have measured the bimolecular quenching rate constant (k(2)) for the photoinitiated (3)ZnDMb --> Fe(3+)b(5) ET reaction as a function of ionic strength. We find: (i) a dramatic decoupling of binding and reactivity, in which k(2) varies approximately 10(3)-fold within the suite of Mbs without a significant change in binding affinity; (ii) the ET reaction occurs within the "thermodynamic" or "rapid exchange" limit of the "Dynamic Docking" model, in which a large ensemble of weakly bound protein-protein configurations contribute to binding, but only a few are reactive, as shown by the fact that the zero-ionic-strength bimolecular rate constant varies exponentially with the net charge on Mb; (iii) Brownian dynamic docking profiles allow us to visualize the microscopic basis of dynamic docking. To describe these results we present a new theoretical approach which mathematically combines PATHWAY donor/acceptor coupling calculations with Poisson-Boltzmann-based electrostatics estimates of the docking energetics in a Monte Carlo (MC) sampling framework that is thus specially tailored to the intermolecular ET problem. This procedure is extremely efficient because it targets only the functionally active complex geometries by introducing a "reactivity filter" into the computations themselves, rather than as a subsequent step. This efficiency allows us to employ more computationally expensive and accurate methods to describe the relevant intermolecular interaction energies and the protein-mediated donor/acceptor coupling interactions. It is employed here to compute the changes in the bimolecular rate constant for ET between Mb and cyt b(5) upon variations in the myoglobin surface charge, pH, and ionic strength.  相似文献   

8.
We introduce a de novo designed peptide model system that enables the systematic study of 1) the role of a membrane environment in coiled-coil peptide folding, 2) the impact of different domains of an alpha-helical coiled-coil heptad repeat on the interaction with membranes, and 3) the dynamics of coiled-coil peptide-membrane interactions depending on environmental conditions. Starting from an ideal alpha-helical coiled-coil peptide sequence, several positively charged analogues were designed that exhibit a high propensity toward negatively charged lipid membranes. Furthermore, these peptides differ in their ability to form a stable alpha-helical coiled-coil structure. The influence of a membrane environment on peptide folding is studied. All positively charged peptides show strong interactions with negatively charged membranes. This interaction induces an alpha-helical structure of the former random-coil peptides, as revealed by circular dichroism measurements. Furthermore, vesicle aggregation is induced by a coiled-coil interaction of vesicle-bound peptides. Dynamic light scattering experiments show that the strength of vesicle aggregation increases with the peptide's intrinsic ability to form a stable alpha-helical coiled coil. Thus, the peptide variant equipped with the strongest inter- and intra-helical coiled-coil interactions shows the strongest effect on vesicle aggregation. The secondary structure of this peptide in the membrane-bound state was studied as well as its effect on the phospholipids. Peptide conformation within the peptide-lipid aggregates was analyzed by (13)C cross-polarization magic-angle spinning NMR experiments. A uniformly (13)C- and (15)N-labeled Leu residue was introduced at position 12 of the peptide chain. The (13)C chemical shift and torsion angle measurements support the finding of an alpha-helical structure of the peptide in its membrane-bound state. Neither membrane leakage nor fusion was observed upon peptide binding, which is unusual for amphiphatic peptide structures. Our results lay the foundation for a systematic study of the influence of the alpha-helical coiled-coil folding motif in membrane-active events on a molecular level.  相似文献   

9.
We report the synthesis and characterization of RuC7, a complex in which a heme is covalently attached to a [Ru(bpy)(3)](2+) complex through a -(CH(2))(7)- linker. Insertion of RuC7 into horse heart apomyoglobin gives RuC7Mb, a Ru(heme)-protein conjugate in which [Ru(bpy)(3)](2+) emission is highly quenched. The rate of photoinduced electron transfer (ET) from the resting (Ru(2+)/Fe(3+)) to the transient (Ru(3+)/Fe(2+)) state of RuC7Mb is >10(8) s(-1); the back ET rate (to regenerate Ru(2+)/Fe(3+)) is 1.4 x 10(7) s(-1). Irreversible oxidative quenching by [Co(NH(3))(5)Cl](2+) generates Ru(3+)/Fe(3+): the Ru(3+) complex then oxidizes the porphyrin to a cation radical (P*+); in a subsequent step, P*+ oxidizes both Fe(3+) (to give Fe(IV)=O) and an amino acid residue. The rate of intramolecular reduction of P*+ is 9.8 x 10(3) s(-1); the rate of ferryl formation is 2.9 x 10(3) s(-1). Strong EPR signals attributable to tyrosine and tryptophan radicals were recorded after RuC7MbM(3+) (M = Fe, Mn) was flash-quenched/frozen.  相似文献   

10.
A novel biocomposite film based on hyaluronic acid (HA) and hydrophilic room temperature ionic liquid 1-ethyl-3-methyl-imidazolium tetrafluoroborate ([EMIM][BF4]) was explored. Here, HA was used as a binder to form [EMIM][BF4]-HA composite film and help [EMIM][BF4] to attaching on glass carbon electrode (GCE) surface, while doping [EMIM][BF4] in HA can effectively reduce the electron transfer resistance of HA. The composite film can be readily used as an immobilization matrix to entrap myoglobin (Mb). A pair of well-defined and quasi-reversible redox peaks of Mb was obtained at the Mb-[EMIM][BF4]-HA composite film modified GCE (Mb-[EMIM][BF4]-HA/GCE) through direct electron transfer between Mb and the underlying electrode. The Mb-[EMIM][BF4]-HA/GCE showed an excellent electrocatalytic activity toward the reduction of H2O2. Based on the [EMIM][BF4]-HA biocomposite film, a third-generation reagentless biosensor could be constructed for the determination of H2O2.  相似文献   

11.
The effect of a proline substitution within a self-replicating coiled-coil peptide was investigated. Substitutions at either the d (hydrophobic, XL-1) or e (hydrophilic, XL-2) positions within the coiled-coil led to remarkable self-replication differences. The fragments of XL-1 showed little propensity for ligation even in the presence of template, whereas XL-2 demonstrated a high catalytic efficiency for self-replication. These results may be due to intrinsic differences in the bend of the helical axis within the two peptides away from the side with the proline residue, resulting in the loss of the continuous hydrophobic interface within XL-1.  相似文献   

12.
Photoinduced electron transfer from tyrosine to the flavin chromophore is involved in activation of BLUF (sensor of blue light using FAD) photoreceptors. We studied the electron transfer (ET) coupled with proton-transfer (PT) reactions, by means of XMCQDPT2//CASSCF calculations on a molecular cluster model. By defining a minimum active space in the CASSCF calculations, we could compute the entire photoreaction pathway. We find that the crossing of the locally excited and ET states is located along the flavin bond-stretching coordinate. The ET state is stabilized by a proton transfer from the electron donor to the electron acceptor. We mapped two different PT pathways from tyrosine to flavin via the conserved glutamine. These reactions generate a tautomeric form of glutamine. Along the PT coordinates, we find geometries where the ET and the electronic ground states degenerate. At the state crossing structures, either formation of the ground state biradical intermediate or a relaxation back to the Franck-Condon minimum takes places. The computed relaxation pathways reveal that the hydrogen bonds involving glutamine in the chromophore-binding pocket control BLUF photoefficiency.  相似文献   

13.
Abstract— A blue light photoreceptor has not been identified in higher plants. Most proposals for a blue light-absorbing chromophore lack evidence for a direct connection between the putative chromophdre and a biological effect. Fluorescence data for the plasma membrane from etiolated buds of Pisum sativum L. suggest that we are measuring fluorescence emission of flavin species, and probably not pterin species. Fluorescence data indicate that a putative flavin exists associated with a protein or protein complex in the plasma membrane. Excitation of plasma membranes that were boiled in the presence of 0.1% sodium dodecyl sulfate and treated with blue light yields a fluorescence band with a maximum of approximately 552 nm. This fluorescence emission can be rapidly quenched by the flavin antagonists phenylacetic acid (PAA) and KI. Blue light-enhanced binding of guanosine 5'-[Γ-thio]triphosphate (GTPγS) to a protein in the plasma membrane is strongly inhibited by PAA, KI, and NaN3, all quenchers of flavin excited states, indicating that a chromophore for this photoreaction may be a flavin associated with a plasma membrane protein. The above evidence is consistent with the participation of a flavin as the chromophore for the light-induced GTP-binding reaction in pea plasma membrane.  相似文献   

14.
Flavin-zinc(II)-cyclen 10 contains a covalently linked substrate binding site (zinc(II)-cyclen) and a chromophore unit (flavin). Upon irradiation, compound 10 effectively oxidizes 4-methoxybenzyl alcohol (11-OCH3) to the corresponding benzaldehyde both in water and in acetonitrile. In the presence of air, the reduced flavin 10-H2 is reoxidized, and so catalytic amounts of 10 are sufficient for alcohol conversion. The mechanism of oxidation is based on photoinduced electron transfer from the coordinated benzyl alcohol to the flavin chromophore. This intramolecular process provides a much higher photooxidation efficiency, with quantum yields 30 times those of the comparable intermolecular process with a flavin chromophore without a binding site. For the reaction in buffered aqueous solution a quantum yield of Phi = 0.4 is observed. The turnover number in acetonitrile is increased (up to 20) by high benzyl alcohol concentrations. The results show that the covalent combination of a chromophore and a suitable binding site may lead to photomediators more efficient than classical sensitizer molecules.  相似文献   

15.
Intracomplex electron transfer (ET) occurs most often in intrinsically transient, low affinity complexes. As a result, the means by which adequate specificity and reactivity are obtained to support effective ET is still poorly understood. We report here on two such ET complexes: cytochrome b5 (cyt b5) in reaction with its physiological partners, myoglobin (Mb) and hemoglobin (Hb). These complexes obey the Dynamic Docking (DD) paradigm: a large ensemble of weakly bound protein-protein configurations contribute to binding in the rapid-exchange limit, but only a few are ET-active. We report the ionic-strength dependence of the second-order rate constant, k2, for photoinitiated ET from within all four combinations of heme-neutralized Zn deuteroporphyrin-substituted Mb/alphaHb undergoing ET with cyt b5, the four "corners" of a "heme-neutralization square". These experiments provide insights into the relative importance of both global and local electrostatic contributions to the binding of reactive configurations, which are too few to be observed directly. To interpret the variations of k2 arising from heme neutralization, we have developed a procedure by which comparisons of the ET rate constants for a heme-neutralization square permit us to decompose the free energy of reactive binding into individual local electrostatic contributions associated with interactions between (i) the propionates of the two hemes and (ii) the heme of each protein with the polypeptide of its partner. Most notably, we find the contribution from the repulsion between propionates of partner hemes to the reactive binding free energy to be surprisingly small, DeltaG(Hb) approximately +1 kcal/mol at ambient temperature, 18 mM ionic strength, and we speculate about possible causes of this observation. To confirm the fundamental assumption of these studies, that the structure of a heme-neutralized protein is unaltered either by substitution of Zn or by heme neutralization, we have obtained the X-ray structure of ZnMb prepared with the porphyrin dimethyl ester and find it to be nearly isostructural with the native protein.  相似文献   

16.
Manual and automated solvent-free mini-ball mill (MBM) matrix-assisted laser desorption/ionization (MALDI) analysis of mixtures of beta-amyloid peptides (1-11), (33-42), (1-42) and non-beta-amyloid component of Alzheimer's disease peptide yielded interpretable spectra for all of the peptides present regardless of their relative amounts in the samples. This was not the case for solvent-based MALDI analysis using traditional acidic aqueous/organic solvent conditions, which resulted in severe over-representation of hydrophilic peptide (1-11) and provided no spectra for insoluble amphiphilic peptide (1-42) even when present at 50% relative molar amount. Less accurate representation of components in mixtures by the traditional method appears to be a combination of poor dissolution of peptides in the solvent and preferential ionization of more hydrophilic peptides in the mixture. Consequently, only MBM provided a complete tryptic map of beta-amyloid (1-42) compared to 67% coverage by traditional MALDI. Acetonitrile (0.1% TFA) led to improved coverage only at a 50% molar ratio of peptide (1-42), but also to a side product of (1-42), Met oxidation (amino acid 35), a phenomenon not observed in MBM MALDI analysis. Traditional MALDI analysis resulted in over-representation of hydrophilic soluble beta-amyloid (1-11) in defined mixtures and autoproteolytic peptides of trypsin. In contrast, over-representation and under-representation were less pronounced in solvent-free MALDI in all of the investigated cases. Analysis of defined peptide and tryptic peptide mixtures showed that MBM MALDI yielded greater qualitative reliability, which also improved quantitative response relative to the solvent-based approach.  相似文献   

17.
Chromophore effect in the photodissociation of protonated peptides at 266 nm was investigated using synthetic peptides with the sequence RGGXGGGGGR where X was a phenylalanyl(F), tyrosyl(Y), cysteinyl(C), glycyl(G), seryl(S), or histidyl(H) residue. The peptides with an F or Y residue dissociated efficiently. Fragment ions due to cleavages at either end of the chromophore were especially prominent just as for the peptide with a tryptophanyl residue reported previously.1Photodissociation was observed even for the peptides without any noticeable chromophore at 266 nm. Here, dissociation at all the peptide bonds was almost equally prominent. Photodissociation of the protonated angiotensin I was investigated using the spectral correlation rules observed in the model systems. Role of the chromophores and the plausible mechanisms involved are discussed.  相似文献   

18.
《Chemistry & biology》1998,5(7):355-364
Background: The homodimeric nitric oxide synthase (NOS) catalyzes conversion of l-arginine to l-citrulline and nitric oxide. Each subunit contains two flavins and one protoporphyrin IX heme. A key component of the reaction is the transfer of electrons from the flavins to the heme. The NOS gene encodes two domains linked by a short helix containing a calmodulin-recognition sequence. The reductase domain binds the flavin cofactors, while the oxygenase domain binds heme and l-arginine and additionally mediates the dimerization of the NOS subunits. We investigated the origin of the unusual magnetic properties (rapid-spin relaxation) of an air-stable free radical localized to a reductase domain flavin cofactor.Results: We characterized the air-stable flavin in wild-type NOS, both in the presence and absence of calcium and calmodulin, the imidazole-bound heme complex of wild-type NOS, the NOS Cys415→Ala mutant, and the isolated reductase domain. All preparations of NOS had the same flavin electron-spin relaxation behavior. No half-field transitions or temperature-dependent changes in the linewidth of the radical spin signal were detected.Conclusions: These data suggest that the observed relaxation enhancement of the NOS flavin radical is caused by the environment provided by the reductase domain. No magnetic interaction between the heme and flavin cofactors was detected, suggesting that the flavin and heme centers are probably separated by more than 15 A.  相似文献   

19.
通过固相合成法制备了三条疏水端不同的两亲性多肽VVVVVVKKGRGDS (AP1)、C12KKGRGDS(AP2)、FAFAFAKKGRGDS (AP3). 自组装行为研究表明, 三条多肽在中性条件下(pH 7.0)均能形成球形纳米胶束, 透射电子显微镜(TEM)检测其粒径为~30 nm, 动态光散射(DLS)测试其粒径分布均一. 当pH下降为5.0时,肽链AP1的胶束结构被破坏, TEM视野中没有发现任何自组装体, 而肽链AP2和AP3的胶束结构在pH 5.0时依然存在, 但AP2的纳米粒子之间明显发生了部分聚集, 表现为团聚样分布, AP3组装体的粒径明显增大, 形貌变得不规则. DLS测试结果显示, 当pH下降到5.0时, 肽链AP1在1-1000 nm范围内没有出现吸收峰, AP2呈多峰分布, AP3呈宽单峰分布. DLS的测试结果很好地印证了TEM的测试结果. 为了探究三条多肽组装性能不同的二级结构因素, 我们对AP1、AP2和AP3进行了圆二色谱(CD)和傅里叶变换红外(FT-IR)光谱测试. 结果表明, 三条多肽在中性条件下二级结构中均存在一定含量的β-折叠, 当pH下降到5.0 时, AP1 结构中的β-折叠成分显著下降, 出现部分无规卷曲. AP2和AP3的β-折叠成分虽有变化, 但其CD主峰依然存在. 以姜黄素作为模型药物, 进一步确认AP1 载药胶束的释药行为也具有优良的酸敏感特性. AP1、AP2 和AP3 在酸性条件下自组装行为的不同, 表明调控两亲性多肽的疏水端组成有可能是调控多肽自组装性能的有效手段. AP1组装体有望成为理想的pH响应性载体材料.  相似文献   

20.
In order to understand the roles of protein matrix in electron transfer processes (ET) within biological systems, a heme-based donor (Zn-heme: ZnPP)-sensitizer (Ru2+(bpy)3)-acceptor (cyclic viologen: BXV4+) triad 1 was used as a probe molecule. Two semi-synthetic systems, Cyt-b562(1) and Mb(1), in which the triad is incorporated into cytochrome b562 (Cyt-b562) or into myoglobin (Mb), were constructed by cofactor reconstitution. These two semi-synthetic proteins were compared with the triad itself (i.e., without the protein matrix) using absorption spectroscopy, steady state emission and excitation studies, laser flash photolysis experiments, and molecular modeling. Photoexcitation of the ZnPP moiety of Cyt-b562(1) or Mb(1) leads to a direct ET from the triplet state of ZnPP state (3ZnPP) to BXV4+ to generate a final charge-separated (CS) state, Cyt-b562(Zn+)-Ru2+-BXV3+* or Mb(Zn+)-Ru2+-BXV3+*. On the other hand, direct ET from the excited ZnPP moiety to the BXV4+ moiety is also involved in 1 in the absence of the protein matrix, but the excited state of ZnPP involved is not 3ZnPP, but the singlet excited state (1ZnPP) in this pathway. When the Ru2+(bpy)3 moiety of Cyt-b562(1) or Mb(1) is excited, a stepwise ET relay occurs with the ion-pair, Cyt-b562(Zn)-Ru3+-BXV3+* or Mb(Zn)-Ru3*-BXV3+*, as an intermediate, leading to the same final CS state as that generated in the direct ET pathway. The lifetimes of the corresponding final CS states were determined to be 300 ns for 1 in the absence of the protein matrix, 600-900 ns for Cyt-b562(1) and 1.1-18 micros for Mb(1), the values of which are greatly affected by the protein matrix. Molecular modeling study of the three systems consistently explained the differences of their photophysical behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号