首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
《光子学报》2021,50(9)
以广义惠更斯-菲涅耳原理为基础,利用推导的部分相干圆刃型位错光束在小鼠真皮组织传输中的交叉谱密度函数解析表达式,研究了光束初始参量(光束波长λ和圆刃型位错数目n)和传输距离z对光束归一化光强分布、相位演化和传输轨迹的影响。结果表明,位错数为n的部分相干圆刃型位错光束,源平面内中心光强最大,两侧对称分布着2n个次峰。随传输距离增加,光强分布由多峰状逐渐演化为单峰状,波长越长,n值越小,光强分布演化越快。位错数目越多,光束稳定性越好。源平面内n个圆刃型位错最内侧的环半径随位错数目增加而减小。受到生物组织湍流诱导和衍射效应的综合作用,自传输开始,圆刃型位错分裂为n对拓扑荷分别为"+1"和"-1"的相干涡旋。随传输距离增加,又新生n对拓扑荷为"+1"和"-1"的相干涡旋。波长越长,n值越大,光束相位演化越快,相干涡旋的位置分布由分散趋于集中,最终全部湮灭。相干涡旋对间距越小,湮灭越早。波长越长,位错数目越多,起始相干涡旋对越早开始湮灭,全部湮灭的传输距离越长;波长越短,位错数目越多,新生相干涡旋对越早开始湮灭,全部湮灭经历的传输距离越长。  相似文献   

2.
任祥贵  吕百达 《光子学报》2009,38(2):259-263
推导出了高阶贝塞耳光束通过有光阑近轴ABCD光学系统传输的解析公式,用以研究了高阶贝塞耳光束被光阑衍射位相奇点的演化特性.结果表明:高阶贝塞耳光束经光阑系统衍射后,中心光涡旋始终存在,拓扑电荷守恒,但涡旋核大小会随光阑半径、传输距离和光束阶数而变化;随光阑半径和传输距离变化,圆刃型位错会消失或产生.  相似文献   

3.
经光阑衍射的高阶贝塞耳光束位相奇点演化特性   总被引:4,自引:4,他引:0  
推导出了高阶贝塞耳光束通过有光阑近轴ABCD光学系统传输的解析公式,用以研究了高阶贝塞耳光束被光阑衍射位相奇点的演化特性.结果表明:高阶贝塞耳光束经光阑系统衍射后,中心光涡旋始终存在,拓扑电荷守恒,但涡旋核大小会随光阑半径、传输距离和光束阶数而变化;随光阑半径和传输距离变化,圆刃型位错会消失或产生.  相似文献   

4.
经光阑衍射的平顶涡旋光束位相奇点的演化特性   总被引:1,自引:1,他引:0  
程科  向安平  钟先琼 《光子学报》2012,41(8):936-945
推导出了平顶涡旋光束通过有光阑ABCD光学系统的传输解析式,并以光阑透镜和矩形光阑系统为例,与平顶光束比较研究了截断参量、相对离轴距离和光束阶数对衍射场中位相奇点演化特性的影响.数值计算表明,平顶涡旋光束通过上述光学系统均存在位相奇点,即使源处涡旋被光阑阻拦时,衍射场中也会出现位相奇点;而平顶光束通过光阑透镜系统存在刃型位错,随着截断参量增大,会发生刃型位错的演化和湮灭现象,且平顶光束通过矩形光阑系统没有发现位相奇点.  相似文献   

5.
程科  向安平  钟先琼 《光子学报》2014,41(8):936-945
推导出了平顶涡旋光束通过有光阑ABCD光学系统的传输解析式,并以光阑透镜和矩形光阑系统为例,与平顶光束比较研究了截断参量、相对离轴距离和光束阶数对衍射场中位相奇点演化特性的影响.数值计算表明,平顶涡旋光束通过上述光学系统均存在位相奇点,即使源处涡旋被光阑阻拦时,衍射场中也会出现位相奇点;而平顶光束通过光阑透镜系统存在刃型位错,随着截断参量增大,会发生刃型位错的演化和湮灭现象,且平顶光束通过矩形光阑系统没有发现位相奇点.  相似文献   

6.
利用相干叠加原理和广义Huygens-Fresnel 衍射积分公式,理论上研究了具有确定初始相位排列的激光束列阵通过大气湍流的传播特性.发现在近距离的传输过程中,列阵光束的光强分布会出现螺旋状分布(即光学涡旋).但由于大气湍流的影响,光束列阵远场涡旋特性随着传输距离的增加逐渐消失,成为无旋涡的实心光束;且当大气湍流变弱时,旋涡特性的有效传输距离逐渐变长. 关键词: 大气湍流 涡旋  相似文献   

7.
湍流大气中高斯谢尔光束的波前位错   总被引:12,自引:12,他引:0  
张逸新  陶纯堪 《光子学报》2005,34(12):1841-1844
在Rytov近似下,通过引入短期统计平均位错位置的概念,研究了高斯谢尔光束通过近地面弱湍流大气传播时,波前圆形位错形成和位错位置与湍流大气起伏强度和传播距离等参数间的关系.基于湍流大气中平行和交叉双光束的简化近似传输模型,研究了湍流大气中传播高斯谢尔光束波前位错位置与大气湍流强度、传输距离等参数间的相关机制.在远小于光波位相起伏周期的条件下,分别得出了束径不同同轴双光束和交叉双光束传播情况下波前圆位错位置的湍流系综统计平均理论关系.所得结果表明,同轴平行光束干涉和交叉光束干涉所产生的光束波前位错受大气湍流强度、传输距离等参数调制的规律是不同的.  相似文献   

8.
数值模拟了拉盖尔-高斯涡旋光束在湍流大气中传输时的光强分布和光学涡旋的漂移。由模拟结果可知,当涡旋光束在湍流大气中传输时,光强分布由最初的环形结构变为平顶结构,最终在远场演化为高斯分布;光强廓线的演变过程与传输距离、湍流强度、湍流外尺度、涡旋光束拓扑荷数、束腰宽度以及光波长有关,与湍流内尺度无关。光学涡旋在接收面的不同位置处出现的频次满足高斯分布;随着传输距离的增加、湍流的增强或涡旋光束拓扑荷数的增加,光学涡旋的漂移范围增大且在不同位置处出现的频次偏离高斯分布;适当选择涡旋光束的束腰宽度会减小光学涡旋的漂移。  相似文献   

9.
何雪梅  吕百达 《物理学报》2012,61(5):54201-054201
一些实验表明, 实际大气会偏离理想Kolmogorov模型. 本文基于广义Huygens-Fresnel原理和Toselli等提出的非Kolmogorov湍流模型, 推导出部分相干双曲正弦-Gauss (HSG)涡旋光束通过非Kolmogorov大气湍流的解析传输公式, 并用以对两束部分相干HSG涡旋光束相干叠加和非相干叠加形成的合成相干涡旋在非Kolmogorov大气湍流中的动态演化进行了研究. 结果表明, 合成光束平均光强的演化过程与非Kolmogorov湍流的广义指数α, 源平面上叠加涡旋光束拓扑电荷的符号, 以及叠加方式有关. 合成相干涡旋在非Kolmogorov大气湍流中传输时会出现移动、产生和湮灭. 广义指数α, 拓扑电荷符号, 以及叠加方式都会影响其演化行为. 最后, 将本文所得结果与相关文献做了比较.  相似文献   

10.
涡旋光束在湍流大气中传输时,其振幅和相位会发生随机起伏,导致在接收平面处的光强起伏及光束扩展等。以低阶拉盖尔-高斯涡旋光束为例,利用激光大气传输四维程序数值模拟了不同条件下的涡旋光束在湍流大气中传输时引起的光束扩展。由模拟结果可知,传输距离越长或湍流越强,涡旋光束在大气中传输时的束宽扩展受湍流的影响越大;涡旋光束的拓扑荷数越高、光束的束腰越小或光波的波长越长,其束宽扩展受大气湍流的影响越小。湍流的内尺度和外尺度也会影响涡旋光束的光束扩展,但影响程度相对较小。另外,通过计算仿真还比较了涡旋光束和普通高斯光束在湍流大气中传输时引起的光束扩展的差异。  相似文献   

11.
基于角谱法和稳相法,推导出了空心高斯涡旋光束的TE波和TM波在自由空间远场传输和能流密度的解析表达式,研究了其相位奇点和能流密度分布。结果表明,空心高斯涡旋光束的远场特性主要跟控制参数有关。改变光束中的涡旋离轴量,光涡旋和能流密度黑核会发生移动。圆刃型位错线的半径和能流密度暗环位置跟束腰宽度有关,而能流密度的对称性主要受涡旋离轴量的影响。  相似文献   

12.
基于广义惠更斯-菲涅耳原理,推导了贝塞尔高斯涡旋光束在湍流大气中传输时系统平均光强的解析表达式,研究了贝塞尔高斯空心涡旋光束在湍流大气中的光强传输特性,同时分析了大气湍流的强弱、涡旋光束的拓扑荷等对光束质量的影响.结果表明:贝塞尔高斯涡旋光束在大气湍流中传输时,光强分布经历几个连续的变化,相位奇异性也会在传输过程中消失,该过程与涡旋光束拓扑荷的数目、光束的束腰宽度以及大气湍流的强弱等因素密切相关.拓扑荷数目高的涡旋光束在湍流大气中传输时,其奇异性的保持较拓扑荷数目低的涡旋光束要好.另外,基于桶中功率理论,分析研究了涡旋光束的拓扑荷数目、大气湍流强弱和束腰宽度对贝塞尔高斯涡旋光束在大气湍流中传输时的光束质量的影响.  相似文献   

13.
闫红卫 《强激光与粒子束》2022,34(5):051003-1-051003-6
基于时间平均复标量场的零值点,推导出寄居于高斯光束中的刃型位错线形成的Riemann-Silberstein (RS)涡旋通过双焦透镜传输时的复标量场。详细研究了刃型位错高斯光束形成的RS涡旋通过双焦透镜的聚焦特性,分析了传输距离和双焦透镜在x方向的焦距对RS涡旋的影响。研究发现RS涡旋通过双焦透镜后会出现RS涡旋的移动、新产生一对含有相反拓扑电荷的RS涡旋、两个含有相反拓扑电荷的RS涡旋逐渐靠近至湮灭,但是,在整个聚焦传输变化过程中,RS涡旋的总拓扑电荷守恒。特别地,当RS涡旋通过理想透镜时,复标量场中始终只有4个位于x轴上的RS涡旋。随着传输距离增加,这4个RS涡旋先逐渐靠近原点(0, 0),又逐渐远离原点(0, 0),但每个RS涡旋的拓扑电荷一直保持不变,因此,总拓扑电荷守恒。  相似文献   

14.
为比较两种不同类型涡旋光束在大气湍流中的传输特性,利用菲涅耳衍射积分公式,推导了涡旋光束在湍流大气中的传输表达式。采用随机相位屏法建立了涡旋光束在大气湍流中的传输模型,计算了不同参数下涡旋光束的强度分布以及光束质量。结果表明:传输距离、拓扑荷数和湍流强度都会对涡旋光束光束质量产生影响。其中,传输距离对超高斯涡旋光束的光束质量的影响更大,而拓扑荷数则对高斯涡旋光束的光束质量的影响更明显。  相似文献   

15.
利用涡旋光束作为空间光通信载波可以大大提高数据传输的容量,因此,研究涡旋光束在大气湍流中的传输具有重要意义.涡旋光束在大气湍流中传输时会产生光束漂移,进而影响通信系统的性能.本文基于多相位屏和傅里叶变换的方法,研究了带有彗差和球差的涡旋光束在大气湍流中传输时的光束漂移特性.结果表明,涡旋光束在大气湍流中传输时,随着传输距离的增大,彗差和球差对光束漂移特性的影响均明显增强.传输天顶角及彗差系数越大,涡旋光束的光束漂移量越大,而球差系数的增大,将会降低光束漂移量.当天顶角和传输距离相同时,涡旋光束的漂移量都会随着拓扑荷数的增大而减小.相对而言,彗差对涡旋光束的光束漂移特性影响比球差更大.  相似文献   

16.
对存在倾斜透镜时两个刃型位错的相互作用进行了研究.研究表明, 两个离轴刃型位错在一定条件下由于相互作用会消失, 并有一个或两个非正则光涡旋产生, 一个共轴刃型位错和一个离轴刃型位错相互作用时产生一个非正则光涡旋. 当初始场中两个刃型位错相互垂直或者平行时, 出射场中会有一个或者两个刃型位错出现. 改变透镜的倾斜因子不影响出射场中位相奇点的类型和数量, 但位相奇点的横向位置与倾斜因子有线性关系. 两个刃型位错相互作用产生的光涡旋对的三维轨迹是非线性的, 但光涡旋对的中心沿直线传输. 关键词: 位相奇点 刃型位错 非正则光涡旋 倾斜透镜  相似文献   

17.
大气湍流像差散焦和像散与高斯涡旋光束焦面光强   总被引:1,自引:0,他引:1       下载免费PDF全文
分别研究了构成大气湍流波像差中的散焦和像散两个低阶像差对高斯涡旋激光束传输和成像的影响.采用菲涅耳-基尔霍夫衍射积分理论和大气湍流波相位结构函数的平方近似研究了聚焦高斯涡旋光束在大气湍流中散焦和像散影响下焦面光强的分布特性.导出了斜程传输条件下接收面上平均光强分布的积分表达式,并采用数值模拟方法研究湍流强度、传输距离和拓扑电荷对焦面光强的调制规律.结果表明:在弱湍流起伏区域,散焦和像散两类像差对高斯涡旋光束的光强分布影响都很小,可以忽略;在中等湍流区域,随着光束传输距离和湍流强度的增加,两类像差都导致高斯涡旋光束的光强峰值降低、束径扩展、中心暗斑扩大.当单拓扑电荷高斯涡旋光束传输时,在同等传输条件下,像散导致的光强峰值降低比散焦更严重,主亮斑区域外的次级亮环强度更大,光斑和中心暗斑扩展更明显.与单拓扑电荷光束相比较,散焦和像散导致双拓扑电荷光束的扩展更加明显,中心光斑更大,亮环区域外的次级亮环更明显;但是,由于光的相干性的降低和光束的偏折效应,像散导致光束中心的暗斑变为次级亮斑.  相似文献   

18.
仓吉  张逸新 《光子学报》2009,38(5):1277-1282
基于广义惠更斯-菲涅耳原理和相位结构函数的平方近似,研究了部分相干高斯-谢尔模型涡旋光束被聚焦后在大气湍流中的传输特性,得到了焦平面上光强解析表达式.利用该表达式,详细研究了该类光束在大气湍流中传输焦平面上的光强分布特性.结果表明:在大气湍流中,随着传输距离的增加,涡旋光束的奇异性逐渐降低.对于拓扑荷大的以及空间相干长度较长的涡旋光束,光束奇异性的保持相对要好.在一定的焦距长度和湍流大气条件下,我们可以通过调整光源的拓扑荷和相干长度控制焦面光强分布和焦斑大小.另外,有一定拓扑荷的涡旋光束可以在一定程度上降低大气湍流对传输光束焦面光强分布的影响.  相似文献   

19.
李晋红  吕百达 《物理学报》2011,60(7):74205-074205
基于广义惠更斯-菲涅耳原理,以高斯-谢尔模型(GSM)涡旋光束作为典型的部分相干涡旋光束,推导出GSM涡旋光束通过大气湍流斜程传输的平均光强、均方根束宽和交叉谱密度函数的解析表达式,并用以研究了大气湍流中上行和下行对GSM涡旋光束传输和对相干涡旋的影响.结果表明,在相同条件下,GSM涡旋光束下行传输受大气湍流的影响要小于上行传输,下行传输时相干涡旋拓扑电荷守恒距离要长于上行传输.对所得结果做了物理解释. 关键词: 部分相干涡旋光束 相干涡旋 大气湍流 上行和下行传输  相似文献   

20.
光场的相位奇异特性是奇点光学研究的重要内容。运用广义惠更斯-菲涅耳衍射积分公式,推导得到异常空心光束通过像散透镜后的光场分布表达式和相位奇点分布表达式,并研究了其在几何焦平面的相位奇异特性。结果表明,异常空心光束通过像散透镜后,在几何焦平面上存在相位奇点,且相位奇点受到透镜的像散系数和光束束腰宽度等参数控制。在一定条件下,几何焦平面上会出现椭圆或圆刃型位错线、光涡旋。当像散系数或束腰宽度改变时,椭圆或圆刃型位错线发生变化,光涡旋也会发生移动、湮灭和产生。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号