首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The mixed (Dirichlet–Neumann) boundary‐value problem for the ‘Laplace’ linear differential equation with variable coefficient is reduced to boundary‐domain integro‐differential or integral equations (BDIDEs or BDIEs) based on a specially constructed parametrix. The BDIDEs/BDIEs contain integral operators defined on the domain under consideration as well as potential‐type operators defined on open sub‐manifolds of the boundary and acting on the trace and/or co‐normal derivative of the unknown solution or on an auxiliary function. Some of the considered BDIDEs are to be supplemented by the original boundary conditions, thus constituting boundary‐domain integro‐differential problems (BDIDPs). Solvability, solution uniqueness, and equivalence of the BDIEs/BDIDEs/BDIDPs to the original BVP, as well as invertibility of the associated operators are investigated in appropriate Sobolev spaces. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
We construct and analyze a family of well‐conditioned boundary integral equations for the Krylov iterative solution of three‐dimensional elastic scattering problems by a bounded rigid obstacle. We develop a new potential theory using a rewriting of the Somigliana integral representation formula. From these results, we generalize to linear elasticity the well‐known Brakhage–Werner and combined field integral equation formulations. We use a suitable approximation of the Dirichlet‐to‐Neumann map as a regularizing operator in the proposed boundary integral equations. The construction of the approximate Dirichlet‐to‐Neumann map is inspired by the on‐surface radiation conditions method. We prove that the associated integral equations are uniquely solvable and possess very interesting spectral properties. Promising analytical and numerical investigations, in terms of spherical harmonics, with the elastic sphere are provided. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Segregated direct boundary‐domain integral equation (BDIE) systems associated with mixed, Dirichlet and Neumann boundary value problems (BVPs) for a scalar “Laplace” PDE with variable coefficient are formulated and analyzed for domains with interior cuts (cracks). The main results established in the paper are the BDIE equivalence to the original BVPs and invertibility of the BDIE operators in the corresponding Sobolev spaces. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

4.
The discretization of the double‐layer potential integral equation for the interior Dirichlet–Laplace problem in a domain with smooth boundary results in a linear system that has a bounded condition number. Thus, the number of iterations required for the convergence of a Krylov method is, asymptotically, independent of the discretization size N. Using the fast multipole method to accelerate the matrix–vector products, we obtain an optimal solver. In practice, however, when the geometry is complicated, the number of Krylov iterations can be quite large—to the extend that necessitates the use of preconditioning. We summarize the different methodologies that have appeared in the literature (single‐grid, multigrid, approximate sparse inverses), and we propose a new class of preconditioners based on a fast multipole method‐based spatial decomposition of the double‐layer operator. We present an experimental study in which we compare the different approaches, and we discuss the merits and shortcomings of our approach. Our method can be easily extended to other second‐kind integral equations with non‐oscillatory kernels in two and three dimensions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, we study the solutions to the generalized Helmholtz equation with complex parameter on some conformally flat cylinders and on the n‐torus. Using the Clifford algebra calculus, the solutions can be expressed as multi‐periodic eigensolutions to the Dirac operator associated with a complex parameter λ∈?. Physically, these can be interpreted as the solutions to the time‐harmonic Maxwell equations on these manifolds. We study their fundamental properties and give an explicit representation theorem of all these solutions and develop some integral representation formulas. In particular, we set up Green‐type formulas for the cylindrical and toroidal Helmholtz operator. As a concrete application, we explicitly solve the Dirichlet problem for the cylindrical Helmholtz operator on the half cylinder. Finally, we introduce hypercomplex integral operators on these manifolds, which allow us to represent the solutions to the inhomogeneous Helmholtz equation with given boundary data on cylinders and on the n‐torus. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
A mathematical model is given for the magnetohydrodynamic (MHD) pipe flow as an inner Dirichlet problem in a 2D circular cross section of the pipe, coupled with an outer Dirichlet or Neumann magnetic problem. Inner Dirichlet problem is given as the coupled convection‐diffusion equations for the velocity and the induced current of the fluid coupling also to the outer problem, which is defined with the Laplace equation for the induced magnetic field of the exterior region with either Dirichlet or Neumann boundary condition. Unique solution of inner Dirichlet problem is obtained theoretically reducing it into two boundary integral equations defined on the boundary by using the corresponding fundamental solutions. Exterior solution is also given theoretically on the pipe wall with Poisson integral, and it is unique with Dirichlet boundary condition but exists with an additive constant obtained through coupled boundary and solvability conditions in Neumann wall condition. The collocation method is used to discretize these boundary integrals on the pipe wall. Thus, the proposed procedure is an improved theoretical analysis for combining the solution methods for the interior and exterior regions, which are consolidated numerically showing the flow behavior. The solution is simulated for several values of problem parameters, and the well‐known MHD characteristics are observed inside the pipe for increasing values of Hartmann number maintaining the continuity of induced currents on the pipe wall.  相似文献   

7.
This paper describes existence, uniqueness and special eigenfunction representations of H1‐solutions of second order, self‐adjoint, elliptic equations with both interior and boundary source terms. The equations are posed on bounded regions with Dirichlet conditions on part of the boundary and Neumann conditions on the complement. The system is decomposed into separate problems defined on orthogonal subspaces of H1(Ω). One problem involves the equation with the interior source term and the Neumann data. The other problem just involves the homogeneous equation with Dirichlet data. Spectral representations of the solution operators for each of these problems are found. The solutions are described using bases that are, respectively, eigenfunctions of the differential operator with mixed null boundary conditions, and certain mixed Steklov eigenfunctions. These series converge strongly in H1(Ω). Necessary and sufficient conditions for the Dirichlet part of the boundary data to have a finite energy extension are described. The solutions for a problem that models a cylindrical capacitor is found explicitly. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
We consider a symmetric Galerkin boundary element method for the Stokes problem with general boundary conditions including slip conditions. The boundary value problem is reformulated as Steklov–Poincaré boundary integral equation which is then solved by a standard approximation scheme. An essential tool in our approach is the invertibility of the single layer potential which requires the definition of appropriate factor spaces due to the topology of the domain. Here we describe a modified boundary element approach to solve Dirichlet boundary value problems in multiple connected domains. A suitable extension of the standard single layer potential leads to an operator which is elliptic on the original function space. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
A Dirichlet problem is considered in a three-dimensional domain filled with a piecewise homogeneous medium. The uniqueness of its solution is proved. A system of Fredholm boundary integral equations of the second kind is constructed using the method of surface potentials, and a system of boundary integral equations of the first kind is derived directly from Green’s identity. A technique for the numerical solution of integral equations is proposed, and results of numerical experiments are presented.  相似文献   

10.
Two‐dimensional time‐fractional diffusion equations with given initial condition and homogeneous Dirichlet boundary conditions in a bounded domain are considered. A semidiscrete approximation scheme based on the pseudospectral method to the time‐fractional diffusion equation leads to a system of ordinary fractional differential equations. To preserve the high accuracy of the spectral approximation, an approach based on the evaluation of the Mittag‐Leffler function on matrix arguments is used for the integration along the time variable. Some examples along with numerical experiments illustrate the effectiveness of the proposed approach. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
This paper deals with boundary‐value methods (BVMs) for ordinary and neutral differential‐algebraic equations. Different from what has been done in Lei and Jin (Lecture Notes in Computer Science, vol. 1988. Springer: Berlin, 2001; 505–512), here, we directly use BVMs to discretize the equations. The discretization will lead to a nonsymmetric large‐sparse linear system, which can be solved by the GMRES method. In order to accelerate the convergence rate of GMRES method, two Strang‐type block‐circulant preconditioners are suggested: one is for ordinary differential‐algebraic equations (ODAEs), and the other is for neutral differential‐algebraic equations (NDAEs). Under some suitable conditions, it is shown that the preconditioners are invertible, the spectra of the preconditioned systems are clustered, and the solution of iteration converges very rapidly. The numerical experiments further illustrate the effectiveness of the methods. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
椭圆外区域上的自然边界元法   总被引:17,自引:5,他引:12  
邬吉明  余德浩 《计算数学》2000,22(3):355-368
1.引言 二十年来,自然边界元法已在椭圆问题求解方面取得了许多研究成果。它可以直接用来解决圆内(外)区域、扇形区域、球内(外)区域及半平面区域等特殊区域上的椭圆边值问题[1,2,5],也可以结合有限元法求解一般区域上的椭圆边值问题,例如基于自然边界归化的耦合算法及区域分解算法就是处理断裂区域问题及外问题的一种有效手段[2-4,6]。 人们在设计求解外问题的耦合算法或者区域分解算法时,通常选取圆周或球面作人工边界。但对具有长条型内边界的外问题,以圆周或球面作人工边界显然并非最佳选择,它将会导致大量的…  相似文献   

13.
We present two new mixed finite element methods coupled with a boundary method for the three dimensional magnetostatic problem. Such formulations are obtained by coupling a finite element method inside a bounded domain with a boundary integral method involving either the Calderon equations or the inverse of Dirichlet Neumann operator to treat the exterior domain. First, we present the formulations and then prove that our mixed formulations are well posed and that they lead to a convergent Galerkin method. Finally, we give numerical results for a sphere immersed in a homogeneous (source) field in the two formulations. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 19: 443–462, 2003  相似文献   

14.
The pseudo‐spectral Legendre–Galerkin method (PS‐LGM) is applied to solve a nonlinear partial integro‐differential equation arising in population dynamics. This equation is a competition model in which similar individuals are competing for the same resources. It is a kind of reaction–diffusion equation with integral term corresponding to nonlocal consumption of resources. The proposed method is based on the Legendre–Galerkin formulation for the linear terms and interpolation operator at the Chebyshev–Gauss–Lobatto (CGL) points for the nonlinear terms. Also, the integral term, which is a kind of convolution, is directly computed by a fast and accurate method based on CGL interpolation operator, and thus, the use of any quadrature formula in its computation is avoided. The main difference of the PS‐LGM presented in the current paper with the classic LGM is in treating the nonlinear terms and imposing boundary conditions. Indeed, in the PS‐LGM, the nonlinear terms are efficiently handled using the CGL points, and also the boundary conditions are imposed strongly as collocation methods. Combination of the PS‐LGM with a semi‐implicit time integration method such as second‐order backward differentiation formula and Adams‐Bashforth method leads to reducing the complexity of computations and obtaining a linear algebraic system of equations with banded coefficient matrix. The desired equation is considered on one and two‐dimensional spatial domains. Efficiency, accuracy, and convergence of the proposed method are demonstrated numerically in both cases. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
This paper deals with radial solutions to localized reaction‐diffusion equations with variable exponents, subject to homogeneous Dirichlet boundary conditions. The global existence versus blow‐up criteria are studied in terms of the variable exponents. We proposed that the maximums of variable exponents are the key clue to determine blow‐up classifications and describe blow‐up rates for positive solutions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, we recall the Oseen coupling method for solving the exterior unsteady Navier–Stokes equations with the non‐homogeneous boundary conditions. Moreover, we derive the coupling variational formulation of the Oseen coupling problem by using of the integral representations of the solution of the Oseen equations at an infinity domain. Finally, we provide some properties of the integral operators over the artificial boundary and the well‐posedness of the coupling variational formulation. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
Integral equations of the first kind for exterior problems arising in the study of the three‐dimensional Helmholtz equation are considered. These equations are derived by seeking solutions in the form of layer potentials with modified fundamental solutions. For each first kind equation, existence and uniqueness of solution are proved with the aid of composition relations involving associated modified boundary integral operators. For the Dirichlet problem, an optimal choice of the modification coefficients is considered in order to minimize the condition number of the resulting integral operator. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
This article describes a numerical method based on the boundary integral equation and dual reciprocity method(DRM) for solving the one‐dimensional advection‐diffusion equations. The concept of DRM is used to convert the domain integral to the boundary that leads to an integration free method. The time derivative is approximated by the time‐stepping method. Numerical results are presented for some problems to demonstrate the usefulness and accuracy of the new approach. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

19.
We develop an Eulerian‐Lagrangian substructuring domain decomposition method for the solution of unsteady‐state advection‐diffusion transport equations. This method reduces to an Eulerian‐Lagrangian scheme within each subdomain and to a type of Dirichlet‐Neumann algorithm at subdomain interfaces. The method generates accurate and stable solutions that are free of artifacts even if large time‐steps are used in the simulation. Numerical experiments are presented to show the strong potential of the method. © 2001 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 17:565–583, 2001  相似文献   

20.
In this paper we consider a boundary problem for a parameter‐elliptic, multi‐order system of differential equations defined over a bounded region in $\mathbb {R}^n$ and under limited smoothness assumptions as well as under boundary conditions which include those of Dirichlet. Information is then derived concerning the asymptotic behaviour of the trace of a power of the resolvent of the Hilbert space operator, in general non‐selfadjoint, induced by the boundary problem under null boundary conditions. This information will then be used in a subsequent work to derive various results pertaining to the asymptotic behaviour of the eigenvalues of this operator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号