首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
单层石墨烯凭借超薄的厚度和优异的力学化学防污性能,成为新一代纳滤膜材料的最佳选择之一.本文采用经典分子动力学方法,研究了氢化多孔石墨烯反渗透膜对盐水的反渗透特性.结果表明,水渗透量会随着驱动力、孔径和温度的增加而增加;而孔径大于水合半径的条件下,盐离子截留率会随驱动力和温度的增加而降低.当反渗透膜和盐水存在切向运动时,随着切向速度的增加可以有效提高盐离子截留率和减弱浓差极化现象,但也在一定程度上牺牲了水通量.通过分析水流沿渗透方向的能障分布、水分子的氢键分布和离子水合状态,解释了各参数变化对盐水在氢化多孔石墨烯中反渗透特性的影响机理.研究结果将提供基于单层多孔石墨烯反渗透特性的理论认识,并将为纳米级反渗透膜的设计提供帮助.  相似文献   

2.
It has been demonstrated that acid-treated graphene samples as well as reduced graphene oxide show fairly intense blue emission centered around 440 nm. Reduction of graphene oxide can be carried out either chemically or by using different types of radiations. Blue emission from graphene-based materials can be combined with the yellow emission from materials like ZnO to produce white light sources.  相似文献   

3.
Precise interface control and dispersal of graphene nanosheets in polymer hosts are challenging to develop high performance graphene-based nanocomposites due to their strong interlayer cohesive energy and surface inertia. Here, we firstly report an efficient and novel method to functionalize graphene nanosheets with vinyl triethoxysilane (VTES) and successfully blend them with low density polyethylene (LDPE) to prepare nanocomposites. Fourier transforms infrared spectra (FTIR), Raman spectra, and thermogravimetric analysis (TGA) proved that the graphene sheets were covalently bonded with VTES. The resulting nanocomposites obtained the increases of up to 27.0 and 92.8% in the tensile strength and Young’s modulus, respectively, compared to neat LDPE. The VTES–graphene not only remarkably improved the tensile strength of the composites, but also enhanced its toughness by 17.7%. Oil permeability measurements showed that the absorption ratio of toluene by the LDPE/graphene composites decreased from 56 to 39%, and its barrier properties have obviously been improved. This study opens a new route to optimize interface structures and improve the comprehensive performances of graphene–polymer nanocomposites.  相似文献   

4.
Haiting Yao 《中国物理 B》2022,31(3):38501-038501
Graphene has high light transmittance of 97.7% and ultrafast carrier mobility, which means it has attracted widespread attention in two-dimensional materials. However, the optical absorptivity of single-layer graphene is only 2.3%, and the corresponding photoresponsivity is difficult to produce at normal light irradiation. And the low on—off ratio resulting from the zero bandgap makes it unsuitable for many electronic devices, hindering potential development. The graphene-based heterojunction composed of graphene and other materials has outstanding optical and electrical properties, which can mutually modify the defects of both the graphene and material making it then suitable for optoelectronic devices. In this review, the advantages of graphene-based heterojunctions in the enhancement of the performance of photodetectors are reviewed. Firstly, we focus on the photocurrent generation mechanism of a graphene-based heterojunction photodetector, especially photovoltaic, photoconduction and photogating effects. Secondly, the classification of graphene-based heterojunctions in different directions is summarized. Meanwhile, the latest research progress of graphene-transition metal dichalcogenide (TMD) heterojunction photodetectors with excellent performance in graphene-based heterostructures is introduced. Finally, the difficulties faced by the existing technologies of graphene-based photodetectors are discussed, and further prospects are proposed.  相似文献   

5.
Research on graphene/nanostructure hybrid materials has been gaining momentum in recent years, with wide-ranging applications in gas sensing and detection. Specifically, noble metal decorated graphene-based novel structures were found to be extremely sensitive and selective owing to the synergistic effect of the compound configuration. In this article, recent developments in graphene/noble metal nanostructure hybrids and their promising potential in gas sensing applications has been highlighted. More significantly, an understanding of the electronic mechanism of gas sensing is presented with a specific emphasis on electron transfer and junctions effects at the graphene/nanostructure interfaces. Finally, the future research prospects of application of bi-metallic and tri-metallic nanostructure/graphene-based hybrids and the challenges in this new and rapidly growing domain are discussed.  相似文献   

6.
The magnetic properties of disordered graphene and irradiated graphite are systematically studied using a combination of mean-field Hubbard model and first-principles calculations. By considering large-scale disordered models of graphene, I conclude that only single-atom defects can induce ferromagnetism in graphene-based materials. The preserved stacking order of graphene layers is shown to be another necessary condition for achieving a finite net magnetic moment of irradiated graphite. Ab initio calculations of hydrogen binding and diffusion and of interstitial-vacancy recombination further confirm the crucial role of stacking order in pi-electron ferromagnetism of proton-bombarded graphite.  相似文献   

7.
Hao Peng 《中国物理 B》2022,31(10):106801-106801
The intercalation of heteroatoms between graphene and metal substrates is a promising method for integrating epitaxial graphene with functional materials. Various elements and their oxides have been successfully intercalated into graphene/metal interfaces to form graphene-based heterostructures, showing potential applications in electronic devices. Here we theoretically investigate the hafnium intercalation between graphene and Ir(111). It is found that the penetration barrier of Hf atom is significantly large due to its large atomic radius, which suggests that hafnium intercalation should be carried out with low deposition doses of Hf atoms and high annealing temperatures. Our results show the different intercalation behaviors of a large-size atom and provide guidance for the integration of graphene and hafnium oxide in device applications.  相似文献   

8.
We review the thermal properties of graphene and multilayer graphene, and discuss graphene’s applications in thermal management of advanced electronics and optoelectronics. A special attention is paid to the use of the liquid-phase-exfoliated graphene and multilayer graphene as the fillers in the thermal interface materials. It has been demonstrated that addition of an optimized mixture of graphene and multilayer graphene to the composites with different matrix materials produces the record-high enhancement of the effective thermal conductivity at the small filler loading fraction (f≤10 vol%). The thermal conductivity enhancement due to the presence of graphene in the composites has been observed for a range of matrix materials used by industry. The hybrid composites where graphene is utilized together with metallic micro- and nanoparticles allow one to tune both the thermal and electrical conductivity of these materials. Theoretical considerations indicate that the graphene-based thermal interface materials can outperform those with carbon nanotubes, metal nanoparticles and other fillers owing to graphene’s geometry, mechanical flexibility and lower Kapitza resistance at the graphene–base material interface.  相似文献   

9.
龚健  张利伟  陈亮  乔文涛  汪舰 《物理学报》2015,64(6):67301-067301
基于有效介质理论研究了石墨烯/介质周期结构的电磁性质, 研究发现这种复合结构的等频面在太赫兹和远红外波段为双曲线, 可用来实现石墨烯基双曲色散特异材料. 通过改变石墨烯的费米能级、介质层厚度和单元结构中石墨烯的层数, 可很容易地调节双曲色散存在的频段. 由于等频面的双曲色散特性, 石墨烯基双曲色散特异材料在远低于截止频率的范围内, 对斜入射的电磁波具有负的能量折射率和正的相位折射率, 并支持局域体等离子体模式. 基于衰减全反射结构, 研究了体等离子体的激发, 探索了体等离子体在可调的光学反射调制器中的应用.  相似文献   

10.
Biofunctionalization and manipulating of graphene nanosheets (GNS) are important for biomedical research and application. Chitosan (CS) modified graphene nanosheets have been successfully prepared under microwave irradiation in N,N-dimethylformamide medium, which involved the reaction between the carboxyl groups of graphene oxide nanosheets (GONS) and the amido groups of chitosan followed by the reduction of graphene oxide nanosheets into graphene nanosheets using hydrazine hydrate. The as-prepared graphene nanosheets-chitosan (GNS-CS) nanocomposites have been characterized by FTIR, TEM, FESEM, XRD and TG. The results showed that chitosan was covalently grafted onto the surface of graphene nanosheets via amido bonds. Solubility measurements indicated that the resultant nanocomposites dispersed well in aqueous acetic acid. Especially, the electrorheological (ER) properties of the GNS-CS nanocomposites have been investigated. It is believed that this new nanocomposites may be promising for biomedical applications.  相似文献   

11.
Surface adhesion properties are important to various applications of graphene-based materials. Atomic force microscopy is powerful to study the adhesion properties of samples by measuring the forces on the colloidal sphere tip as it approaches and retracts from the surface. In this paper we have measured the adhesion force between the colloid probe and the surface of graphene (graphene oxide) nanosheet. The results revealed that the adhesion force on graphene and graphene oxide surface were 66.3 and 170.6 nN, respectively. It was found the adhesion force was mainly determined by the water meniscus, which was related to the surface contact angle of samples.  相似文献   

12.
Hua Tian  Lin Wang  Xiujuan Qin  Guangjie Shao 《Ionics》2014,20(8):1055-1061
Super-hydrophobic graphene was treated with 4-benzenediazoniumsulfonate to obtain a series of functionalized graphene (FG) with enhanced hydrophilic properties. The results from Fourier transform infrared (FT-IR) spectra and thermogravimetric (TG) analyses demonstrate that ?SO3H groups are covalently anchored to functionalized graphene and alter the thermal stability of graphene-based materials. In comparison to pristine graphene (PG), functionalized graphene as prepared exhibits enhanced hydrophilic properties which can be conducted by varying the diazotization-coupling reaction time. Cyclic voltammetry (CV) curves indicate that enhanced hydrophilic properties improve the capacitance of functionalized graphene up to twice than that of pristine graphene in Na2SO4 electrolytes. Moreover, electrochemical impedance spectroscopy (EIS) reveals that the high level of functionalization will cause the decrease of the electric conductivity and capacitive performance, suggesting that functionalization of graphene provides the competitive relationship between the positive hydrophilicity increase and the negative conductivity decrease to capacitive performance.  相似文献   

13.
The electronic transport properties of graphene-based superlattice structures are investigated. A graphene-based modulation-doped superlattice structure geometry is proposed consisting of periodically arranged alternate layers: InAs/graphene/GaAs/graphene/GaSb. The undoped graphene/GaAs/graphene structure displays a relatively high conductance and enhanced mobilities at increased temperatures unlike the modulation-doped superlattice structure, which is more steady and less sensitive to temperature and the robust electrical tunable control on the screening length scale. The thermionic current density exhibits enhanced behavior due to the presence of metallic (graphene) monolayers in the superlattice structure. The proposed superlattice structure might be of great use for new types of wide-band energy gap quantum devices.  相似文献   

14.
We fabricated composites of Fe2O3/reduced graphene oxide as lithium-ion batteries anode material with controlled structures by employing self-assembly of metal–organic frameworks (MOFs) and polymer-functionalized graphene oxide as precursors. By electrostatic interaction, the negatively charged MOFs, Prussian Blue (PB), are assembled on poly(diallyldimethylammonium chloride) (PDDA)-functionalized graphene oxide (positive charge). Then the PB cubes become FeOOH nanosheets when treated with sodium hydroxide. Upon further annealing, the FeOOH nanosheets transform to Fe2O3 nanoparticles while the graphene oxide become reduced graphene oxide simultaneously. It was found that the composites have good performance as anode of lithium-ion battery. This work shows a new way for self-assembling MOFs and 2D materials.  相似文献   

15.
程杨  姚佰承  吴宇  王泽高  龚元  饶云江 《物理学报》2013,62(23):237805-237805
石墨烯材料应用到各种光波导器件中正成为新一代光子器件的重要发展方向之一,目前基于石墨烯的光纤和集成光子器件研究越来越受到国内外的重视. 本文建立了一种由微纳光纤耦合光倏逝场,并在石墨烯薄膜中传输的模型. 通过有限元分析法,研究了光在这种石墨烯波导中传输光场的强度分布和相位特性,并通过实验进行了验证. 结果表明,沿着微纳光纤-石墨烯光波导传播的倏逝场的强度分布和相位均受石墨烯材料作用,石墨烯材料能有效聚集和导行波导中传输的高阶模,在单位传输长度上具有更密集的等相位面. 本文提出了一种利用微纳光纤耦合光倏逝场研究石墨烯相位响应特性的新方法,对基于石墨烯波导的新型调制器、滤波器、激光器和传感器等光子器件的设计和应用具有一定的参考意义. 关键词: 石墨烯平面光波导 倏逝波 光场强度 相位  相似文献   

16.
Monolayer and bilayer graphenes have generated tremendous excitement as the potentially useful electronic materials due to their unique features.We report on monolayer and bilayer epitaxial graphene field-effect transistors(GFETs)fabricated on SiC substrates.Compared with monolayer GFETs,the bilayer GFETs exhibit a significant improvement in dc characteristics,including increasing current density Ids,improved transconductance g_m,reduced sheet resistance R_(on),and current saturation.The improved electrical properties and tunable bandgap in the bilayer graphene lead to the excellent dc performance of the bilayer GFETs.Furthermore,the improved dc characteristics enhance a better rf performance for bilayer graphene devices,demonstrating that the quasifree-standing bilayer graphene on SiC substrates has a great application potential for the future graphene-based electronics.  相似文献   

17.
While crystalline two-dimensional materials have become an experimental reality during the past few years, an amorphous 2D material has not been reported before. Here, using electron irradiation we create an sp2-hybridized one-atom-thick flat carbon membrane with a random arrangement of polygons, including four-membered carbon rings. We show how the transformation occurs step by step by nucleation and growth of low-energy multivacancy structures constructed of rotated hexagons and other polygons. Our observations, along with first-principles calculations, provide new insights to the bonding behavior of carbon and dynamics of defects in graphene. The created domains possess a band gap, which may open new possibilities for engineering graphene-based electronic devices.  相似文献   

18.
为了寻求高灵敏度的石墨烯基的SO_2气体传感器,本文采用基于密度泛函理论的第一性原理方法,研究纯净石墨烯(PG)、单空位缺陷(SVG)、SW缺陷(SWG)、Mn掺杂修饰的石墨烯(Mn-PG)及掺杂和缺陷共修饰的石墨烯(Mn-SVG和Mn-SWG)对SO_2分子的吸附特性.研究表明:PG和SWG对SO_2分子的吸附作用较弱,对SO_2分子不具有敏感性;SO_2分子在SVG表面的吸附能够有效调控其电子结构的变化,使其由金属性转变为半金属性,但其吸附能较低(0.636 eV);结合了Mn掺杂和SV缺陷的Mn-SVG基底尽管增大了与SO_2分子相互作用,但未能引起该体系电子结构和磁性的明显改变;相比之下,SO_2分子在Mn-PG和Mn-SWG基底上具有较强的吸附稳定性;同时,该分子吸附可诱发Mn-PG和Mn-SWG体系磁矩的急剧降低和电导率的显著变化,故可作为探测和清除环境中SO_2分子理想材料.该研究为设计新型石墨烯气体传感器提供理论参考.  相似文献   

19.
We developed and are presenting a graphene-based nanophotonic Mach–Zehnder Interferometer (MZI), which can operate as a signal follower, switch and splitter and as a multiplexer/demultiplexer. Due to the excellent electrical/optical parameters inherent to the graphene, we showed that the device we are presenting can works in several different ways, which can not be supported by MZI based on conventional materials. It is worth mentioning that the operations of the device we have developed take into account the electrical/optical parameters of the graphene, which provide greater versatility and efficiency compared to the MZIs manufactured with conventional materials. In addition, these parameters can be controlled via, for example, gate voltage, so that many operations can be performed in parallel, which is also not possible through the use of conventional materials. Due to its manometric dimensions, this MZI can be integrated within photonic integrated circuits, so that we can use this device in dense wavelength division multiplexing optical communications.  相似文献   

20.
本研究采用密度泛函理论研究了纯的及V,Fe,Ni,Pd,Si,P,S和Cl掺杂原子的石墨烯和CaH_2分子之间相互作用.研究结果发现CaH_2分子与所有石墨烯表面均具有较大的相互作用,而CaH_2分子与掺杂石墨烯相互作用都大于与纯石墨烯的相互作用,在所有掺杂原子中,其中与Pd掺杂石墨烯具有最大的相互作用,S次之,其它掺杂石墨烯与CaH_2分子相互作用能力相差不大.这些结果表明虽然所有石墨烯均有助于CaH_2中H原子的脱附,但掺杂石墨烯脱附能力仍然大于纯的石墨烯.在掺杂原子中,Pd和S掺杂石墨烯对CaH_2中H原子的脱附效果最好,其它的掺杂原子脱附效果相差不明显.此研究结果将有望为CaH_2分子在石墨烯基材料中吸氢-脱氢行为提供有用的理论参考价值.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号