首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The threshold of a short interaurally phase-inverted probe tone (20 ms, 500 Hz, S pi) was obtained in the presence of a 750-ms noise masker that was switched after 375 ms from interaurally phase-inverted (N pi) to interaurally in-phase (No). As the delay between probe-tone offset and noise phase transition is increased, the threshold decays from the N pi S pi threshold (masking level difference = 0 dB) to the No S pi threshold (masking level difference = 15 dB). The decay in this "binaural" situation is substantially slower than in a comparable "monaural" situation, where the interaural phase of the masker is held constant (N pi), but the level of the masker is reduced by 15 dB. The prolonged decay provides evidence for additional binaural sluggishness associated with "binaural forward masking." In a second experiment, "binaural backward masking" is studied by time reversing the maskers described above. Again, the situation where the phase is switched from No to N pi exhibits a slower transition than the situation with constant interaural phase (N pi) and a 15-dB increase in the level of the masker. The data for the binaural situations are compatible with the results of a related experiment, previously reported by Grantham and Wightman [J. Acoust. Soc. Am. 65, 1509-1517 (1979)] and are well fit by a model that incorporates a double-sided exponential temporal integration window.  相似文献   

2.
Reductions in overshoot following intense sound exposures   总被引:1,自引:0,他引:1  
Overshoot refers to the poorer detectability of brief signals presented soon after the onset of a masking noise compared to those presented after longer delays. In the present experiment, brief tonal signals were presented 2 or 190 ms following the onset of a broadband masker that was 200 ms in duration. These two conditions of signal delay were tested before and after a series of exposures to a tone intense enough to induce temporary threshold shift (TTS). The magnitude of the overshoot was reduced after the exposure when a TTS of at least 10 dB was induced, but not when smaller amounts of TTS were induced. The reduction in overshoot was due to a decrease in the masked thresholds with the 2-ms delay; masked thresholds with the 190-ms delay were not different pre- and post-exposure. The implication is that the mechanisms responsible for the normal overshoot effect are temporarily inactivated by the same stimulus manipulations that produce a mild exposure-induced hearing loss. Thus the result is the paradox that exposure to intense sounds can produce a loss of signal detectability in certain stimulus conditions and a simultaneous improvement in detectability in other stimulus conditions.  相似文献   

3.
Yost [J. Acoust. Soc. Am. 78,901-907 (1985)] found that the detectability of a 30-ms dichotic signal (S pi) in a 30-ms diotic noise (No) was not affected by the presence of a 500-ms dichotic forward fringe (N pi). Kollmeier and Gilkey [J. Acoust. Soc. Am. 87, 1709-1719, (1990)] performed a somewhat different experiment and varied the onset time of a 25-ms S pi signal in a 750-ms noise that switched, after 375-ms, from N pi to No. In contrast to Yost, they found that the N pi segment of the noise reduced the detectability of the signal even when the signal was temporally delayed well into the No segment of the noise and suggested that the N pi segment of noise acted as a forward masker. To resolve this apparent conflict, the present study investigated the detectability of a brief S pi signal in the presence of an No masker of the same duration as the signal. The masker was preceded by quiet or an N pi forward fringe and followed by quiet, an No, or N pi backward fringe. The present study differs from most previous studies of the effects of the masker fringe in that the onset time of the signal was systematically varied to examine how masking changes during the time course of the complex fringe-masker-fringe stimulus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Reductions in overshoot during aspirin use   总被引:1,自引:0,他引:1  
The overshoot effect was measured before, during, and after the administration of a moderate dose of aspirin. Prior to the drug, detectability of the 6-ms, 3550-Hz signal was 5-11 dB worse when presented 2 ms after the onset of the 200-ms wideband masking noise than when presented 190 ms after masker onset. Following 4 days of aspirin use, detectability in the long-delay condition was unchanged from the predrug value, but (for four of the five subjects) detectability in the short-delay condition was improved by about 4-8 dB. Thus the overshoot effect was markedly reduced by aspirin because the drug partially counteracted the normally poor detectability for signals presented soon after masker onset. This paradoxical improvement in detectability was accompanied by an aspirin-induced loss in detectability of 5-16 dB for a 200-ms sample of that same signal presented in the quiet. Similar paradoxical effects have previously been obtained by inducing a temporary hearing loss with exposure to intense sound. It is presumed that the same basic mechanisms underlie the parallel outcomes. The so-called cochlear amplifier is discussed in this regard, and also the possibility that the known differences in those primary auditory fibers having high and low spontaneous rates may be involved. A supplementary experiment demonstrated that shifting audibility with either a wideband or a narrow-band background noise does not affect the overshoot effect in the same way as does aspirin or exposure to intense sound, further suggesting that the cochlear amplifier must be altered in order for overshoot to be diminished.  相似文献   

5.
Detection thresholds for tones in narrow-band noise were measured for two binaural configurations: N(o)S(o) and N(o)S(pi). The 30-Hz noise band had a mean overall level of 65 dB SPL and was centered on 250, 500, or 5000 Hz. Signals and noise were simultaneously gated for 500, 110, or 20 ms. Three conditions of level randomization were tested: (1) no randomization; (2) diotic randomization--the stimulus level (common to both ears) was randomly chosen from an uniformly distributed 40-dB range every presentation interval; and (3) dichotic randomization--the stimulus levels for each ear were each independently and randomly chosen from the 40-dB range. Regardless of binaural configuration, level randomization had small effects on thresholds at 500 and 110 ms, implying that binaural masking-level differences (BMLDs) do not depend on interaural level differences for individual stimuli. For 20-ms stimuli, both diotic and dichotic randomization led to markedly poorer performance than at 500- and 110-ms durations; BMLDs diminished with no randomization and dichotic randomization but not with diotic randomization. The loss of BMLDs at 20 ms, with degrees-of-freedom (2WT) approximately 1, implies that changes in intracranial parameters occurring during the course of the observation interval are necessary for BMLDs when mean-level and mean-intracranial-position cues have been made unhelpful.  相似文献   

6.
Detectability of binaurally presented 400- and 800-Hz tonal signals was investigated in an adaptive, two-interval forced-choice experiment. A continuous 3150-Hz low-pass noise masker was presented either diotically (No), interaurally uncorrelated (NU), or interaurally phase-reversed (N pi), at an overall level of 70 dB SPL. Signal duration was either 100 or 1000 ms. The interaural phase difference (IAPD) of the signal was either fixed (0 degree-180 degrees) or time-varying (slightly different frequencies were presented to the two ears). The range of interaural phase variations was selected to yield the same varying interaural temporal differences that would be produced if real auditory targets moved through various arcs in the horizontal plane. In no case was a signal with varying IAPD any more (or less) detectable than would be expected from averaging subjects' performance in the corresponding fixed-IAPD conditions through which the variation occurred. However, in detecting these signals, subjects placed relatively more weight on the temporal central portion than on either the onset or offset. It is proposed that this weighting effect is based on two factors: (1) the signal's 20-ms rise-decay time (i.e., the onset and offset receive less binaural weight because of monaural attenuation); and (2) the very low-pass filtering effected by the binaural system, which results in some minimum time required for it to become "fully engaged." Another finding was that signal detectability became gradually worse as the antiphasic moment in a varying-IAPD signal was moved from the temporal midpoint toward the onset. No evidence was found that a signal's onset and offset were weighted differently in a binaural signal detection task.  相似文献   

7.
The detectability of a 10-ms tone masked by a 400-ms wideband noise was measured as a function of the delay in the onset of the tone compared to the onset of the noise burst. Unlike most studies like this on auditory overshoot, special attention was given to signal delays between 0 and 45 ms. Nine well-practiced subjects were tested using an adaptive psychophysical procedure in which the level of the masking noise was adjusted to estimate 79% correct detections. Tones of both 3.0 and 4.0 kHz, at different levels, were used as signals. For the subjects showing overshoot, detectability remained approximately constant for at least 20-30 ms of signal delay, and then detectability began to improve gradually toward its maximum at about 150-200 ms. That is, there was a "hesitation" prior to detectability beginning to improve, and the duration of this hesitation was similar to that seen in physiological measurements of the medial olivocochlear (MOC) system. This result provides further support for the hypothesis that the MOC efferent system makes a major contribution to overshoot in simultaneous masking.  相似文献   

8.
Signal detection in diotic (NoSo) and dichotic (NoS pi) conditions was measured as a function of the stimulus parameters of the noise that preceded the signal-plus-masker. When the signal and masker were both pulsed, dichotic signal detection was worse than when the masker was continuous or when the onset of the masker preceded the signal-plus-masker by at least 500 ms. The dichotic detection thresholds decreased as the duration of the pulsed signal plus pulsed masker was increased. The level, spectrum, interaural configuration, duration, and temporal proximity of the prior noise (forward fringe) relative to the masker and/or signal and masker were all investigated. Almost any difference between the parameters of the fringe and the masker resulted in poorer signal detection in the dichotic conditions. These same stimulus conditions produced small (less than 2.2 dB) changes in the diotic detection thresholds. The various models of the Masking-Level Difference (MLD) may be modified to qualitatively describe some of these results.  相似文献   

9.
In the present study detection under diotic (NoSo) and dichotic (NoS pi) listening conditions in a forward masking paradigm was investigated. Both the level of a noise masker and the temporal separation between the masker and a 250-Hz tone burst served as independent variables. Results showed that most of the variance in the data could be accounted for by the amount of masking in the NoSo condition, independent of the value of the temporal parameter, which itself accounted for only 1.4% of the variance that remained. Once the data were corrected for NoSo masking effectiveness, the MLD was found to decrease by only 1.4 dB as temporal separation increased from 5-100 ms, which is consistent with a very long time constant for the binaural system. Consistent with this finding, it was shown that slope changes of the growth of masking functions, for simultaneous as compared to forward masking, were similar for both the NoSo and NoS pi conditions.  相似文献   

10.
Two experiments were performed that examined the relation between frequency selectivity for diotic and dichotic stimuli. Subjects were eight normal-hearing listeners. In each experiment, a 500-Hz pure tone of 400-ms duration was presented in continuous noise. In the diotic listening conditions, a signal and noise were presented binaurally with no interaural differences (So and No, respectively). In the dichotic listening conditions, the signal or noise at one ear was 180 degrees out-of-phase relative to the respective stimulus at the other ear (S pi and N pi, respectively). The first experiment examined frequency selectivity using the bandlimiting measure. Here, signal thresholds were determined as a function of masker bandwidth (50, 100, 250, 500, and 1000 Hz) for SoNo, S pi No, and SoN pi listening conditions. The second experiment used a modified bandlimiting measure. Here, signal thresholds (So and S pi) were determined with a relatively narrow No band of masker energy (50 Hz wide) centered about the signal. Then, a second No narrow-band masker (30 Hz wide) was added at another frequency region, and signal thresholds were reestablished. The results of the two experiments indicated that listeners process a wider band of frequencies when resolving dichotic stimuli than when resolving diotic or monotic stimuli. The results also indicated that the bandlimiting measure may underestimate the spectral band processed upon dichotic stimulation. Results are interpreted in terms of an across-ear and across-frequency processing of waveform amplitude envelope.  相似文献   

11.
The notion of binaural echo suppression that has persisted through the years states that when listening binaurally, the effects of reverberation (spectral modulation or coloration) are less noticeable than when listening with one ear only. This idea was tested in the present study by measuring thresholds for detection of an echo of a diotic noise masker with the echo presented with either a zero or a 500-musec interaural delay. With echo delays less than 5-10 msec, thresholds for the diotic echo were about 10 dB lower than for the dichotic signal, a finding opposite that of the usual binaural masking-level difference but consistent with the notion of binaural echo suppression. Additional echo-threshold measurements were made with echoes of interaurally reversed polarity, producing out-of-phase spectral modulations. The 10-15 dB increase in thresholds for the reverse-polarity echo, over those for the same-polarity echo, indicated that the apparent "hollowness" associated with spectral modulations can be partially canceled centrally. Overall, the results of this study are consistent with a model in which: (1) the monaural representations of spectral magnitude are nonlinearly compressed prior to being combined centrally; and (2) neither monaural channel can be isolated in order to perform the detection task.  相似文献   

12.
Either an interaural phase shift or level difference was introduced to a narrow section of broadband noise in order to measure the acuity of the binaural system to segregate a narrowband from a broadband stimulus. Listeners were asked to indicate whether this dichotic noise or a totally diotic noise was presented in a single-interval procedure. Thresholds for interaural phase and level differences were estimated from four point psychometric functions. These thresholds were determined for three bandwidths of interaurally altered noise (2, 10, and 100 Hz) centered at four center frequencies (200, 500, 1000, and 1600 Hz). Thresholds were lowest when the interaurally altered band of noise was centered at 500 Hz, and thresholds increased as the bandwidth of the interaurally altered noise decreased. Performance did not exceed 75% correct when either an interaural phase shift (180 degrees) or interaural level difference (50 dB) was introduced to a 100 Hz band of noise centered at frequencies higher than 1600 Hz. In a second set of conditions, performance was measured when both an interaural phase shift and level difference were presented in a 10-Hz-wide band of noise centered at 500 Hz. A version of the Durlach E-C model was able to account for a great deal of the data. The results are discussed in terms of the Huggins dichotic pitch.  相似文献   

13.
In this paper previous experiments on auditory filter shapes in binaural masking experiments [A. Kohlrausch, J. Acoust. Soc. Am. 84, 573-583 (1988)] are extended to a wider range of masker and signal durations. The masker was a dichotic broadband noise with frequency-dependent interaural parameters. The interaural phase difference of the masker was 0 below 500 Hz and pi above 500 Hz. Signal frequency varied between 200 and 800 Hz, and the signal was presented either monaurally (Sm) or binaurally in antiphase (S pi). In the first experiment, the masker duration was fixed at 500 ms and signals of 250 and 20 ms were used. In the second experiment, the signal duration was fixed at 20 ms, and the masker duration was reduced to 25 ms. The results from both experiments are consistent with studies using No or N pi maskers: The binaural masking level difference (BMLD) increases slightly for shorter test signals and decreases strongly for short maskers. The BMLD patterns of the first experiment are well described by the auditory-filter model derived for stationary test signals, if the additional influence of "off-frequency listening" for the short test signal is taken into account. The BMLDs resulting from the second experiment (25-ms masker), however, are much lower than predicted by this filter model This outcome supports previous observations that binaural unmasking becomes less effective for very short masker durations and indicates that this effect is even stronger for maskers with a complex structure of interaural parameters.  相似文献   

14.
Effect of masker level on overshoot   总被引:5,自引:0,他引:5  
Overshoot refers to the phenomenon where signal detectability improves for a short-duration signal as the onset of that signal is delayed relative to the onset of a longer duration masker. A popular explanation for overshoot is that it reflects short-term adaptation in auditory-nerve fibers. In this study, overshoot was measured for a 10-ms, 4-kHz signal masked by a broadband noise. In the first experiment, masker duration was 400 ms and signal onset delay was 1 or 195 ms; masker spectrum level ranged from - 10-50 dB SPL. Overshoot was negligible at the lowest masker levels, grew to about 10-15 dB at the moderate masker levels, but declined and approached 0 dB at the highest masker levels. In the second experiment, the masker duration was reduced to 100 ms, and the signal was presented with a delay of 1 or 70 ms; masker spectrum level was 10, 30, or 50 dB SPL. Overshoot was about 10 dB for the two lower masker levels, but about 0 dB at the highest masker level. The results from the second experiment suggest that the decline in overshoot at high masker levels is probably not due to auditory fatigue. It is suggested, instead, that the decline may be attributable to the neural response at high levels being dominated by those auditory-nerve fibers that do not exhibit short-term adaptation (i.e., those with low spontaneous rates and high thresholds).  相似文献   

15.
A series of masking experiments was performed with the aim of comparing frequency selectivity for the monaural and binaural systems. The masking stimulus used in this study combined a sinusoid, which was gated simultaneously with the signal, with a continuous broadband noise. Signal frequency was fixed at 500 Hz. In one condition, the tonal masker and noise were interaurally in phase and the signal was phase reversed. In a second condition, noise, tonal masker, and signal were presented to one ear alone. Signal thresholds were obtained as a function of masker frequency for these two conditions. After making an appropriate selection of noise levels, masking functions for the monaural and binaural system conditions were found to agree closely except for a region about their tips where the binaural condition was more detectable. Two possible interpretations of these results are discussed. Either the monaural and binaural systems contain filters each which have similarly shaped skirts, or the frequency selectivity observed under both diotic and dichotic conditions (for large frequency separations of masker and signal) reflect the operation of a common peripheral filter.  相似文献   

16.
Binaural masking patterns show a steep decrease in the binaural masking-level difference (BMLD) when masker and signal have no frequency component in common. Experimental threshold data are presented together with model simulations for a diotic masker centered at 250 or 500 Hz and a bandwidth of 10 or 100 Hz masking a sinusoid interaurally in phase (S(0)) or in antiphase (S(π)). Simulations with a binaural model, including a modulation filterbank for the monaural analysis, indicate that a large portion of the decrease in the BMLD in remote-masking conditions may be due to an additional modulation cue available for monaural detection.  相似文献   

17.
Zurek [P. M. Zurek, J. Acoust. Soc. Am. Suppl. 1 78, S18 (1985)] noted what he termed "spectral dominance" in sensitivity to interaural delay for broadband stimuli. He found that interaural delays presented solely within high-frequency spectral regions were difficult, if not impossible, to detect in the presence of spectrally flanking, gated, diotic noise. In order to see if spectral dominance is a general result of the processing of interaural delays in broadband stimuli, similar experiments were conducted utilizing both gated and continuous flanking noises that were interaurally identical (diotic) or completely uncorrelated. Beyond replicating Zurek's basic findings, the data strongly suggest that the processing of interaural delays was largely unaffected when the flanking sounds were continuous and diotic. When the flanking sounds were interaurally uncorrelated, sensitivity was affected, but not drastically, for both gated and continuous conditions. Consequently, it appears that any inability to cope with conflicting interaural cues across spectral regions may be observed only under restricted conditions.  相似文献   

18.
This study investigates whether binaural signal detection is improved by the listener's previous knowledge about the interaural phase relations of masker and test signal. Binaural masked thresholds were measured for a 500-ms dichotic noise masker that had an interaural phase difference of 0 below 500 Hz and of pi above 500 Hz. The thresholds for two difference 20-ms test signals were determined within the same measurement using an interleaved adaptive 3-interval forced-choice (3IFC) procedure. In each 3IFC trial, both signals could occur with equal probability (uncertainty). The two signals differed in frequency and interaural phase in such a way that one signal always had a frequency above the masker edge frequency (500 Hz) and no interaural phase difference (So), whereas the other signal frequency was below 500 Hz and the interaural phase difference was pi (S pi). The frequencies of a signal pair remained fixed during the whole 3IFC track. These two signals thus lead to two different binaural conditions, i.e., NoS pi for the low-frequency signal and N pi So for the high-frequency signal. For comparison, binaural masked thresholds were measured with the same masker for fixed signal frequency and phase. The binaural masking level differences (BMLDs) resulting from the two experimental conditions show no significant difference. This indicates that the binaural system is able to apply different internal transformations or processing strategies simultaneously in different critical bands and even within the same critical band.  相似文献   

19.
The overshoot effect can be reduced by temporary hearing loss induced by aspirin or exposure to intense sound. The present study simulated a hearing loss at 4.0 kHz via pure-tone forward masking and examined the effect of the simulation on threshold for a 10-ms, 4.0-kHz signal presented 1 ms after the onset of a 400-ms, broadband noise masker whose spectrum level was 20 dB SPL. Masker frequency was 3.6, 4.0, or 4.2 kHz, and masker level was 80 dB SPL. Subject-dependent delays were determined such that 10 or 20 dB of masking at 4.0 kHz was produced. In general, the pure-tone forward masker did not reduce the simultaneous-masked threshold, suggesting that elevating threshold with a pure-tone forward masker does not sufficiently simulate the effect of a temporary hearing loss on overshoot.  相似文献   

20.
This study was designed to investigate the effects of masker level and frequency on binaural detection and interaural time discrimination. Detection and interaural time discrimination of a 700-Hz sinusoidal signal were measured as a function of the center frequency and level of a narrow-band masking noise. The masker was a continuous, diotic, 80-Hz-wide noise that varied in center frequency from 250 to 1370 Hz. In the detection experiment, the signal was presented either diotically (NoSo) or interaurally phase reversed (NoS pi). In the interaural time discrimination experiment, the signal level needed to discriminate a 30-microseconds interaural delay was measured. As would be expected, the presence of the masker has a greater effect on NoSo detection than NoS pi detection, and for masker frequencies at or near the signal frequency. In contrast, interaural time discrimination can be improved by the presence of a low-level masker. Also, performance improves more rapidly as the signal/masker frequency separation increases for NoSo detection than for interaural time discrimination and NoS pi detection. For all three tasks, significant upward spread of masking occurs only at the highest masker level; at low masker levels, there is a tendency toward downward spread of masking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号