首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Signal detection in diotic (NoSo) and dichotic (NoS pi) conditions was measured as a function of the stimulus parameters of the noise that preceded the signal-plus-masker. When the signal and masker were both pulsed, dichotic signal detection was worse than when the masker was continuous or when the onset of the masker preceded the signal-plus-masker by at least 500 ms. The dichotic detection thresholds decreased as the duration of the pulsed signal plus pulsed masker was increased. The level, spectrum, interaural configuration, duration, and temporal proximity of the prior noise (forward fringe) relative to the masker and/or signal and masker were all investigated. Almost any difference between the parameters of the fringe and the masker resulted in poorer signal detection in the dichotic conditions. These same stimulus conditions produced small (less than 2.2 dB) changes in the diotic detection thresholds. The various models of the Masking-Level Difference (MLD) may be modified to qualitatively describe some of these results.  相似文献   

2.
Yost [J. Acoust. Soc. Am. 78,901-907 (1985)] found that the detectability of a 30-ms dichotic signal (S pi) in a 30-ms diotic noise (No) was not affected by the presence of a 500-ms dichotic forward fringe (N pi). Kollmeier and Gilkey [J. Acoust. Soc. Am. 87, 1709-1719, (1990)] performed a somewhat different experiment and varied the onset time of a 25-ms S pi signal in a 750-ms noise that switched, after 375-ms, from N pi to No. In contrast to Yost, they found that the N pi segment of the noise reduced the detectability of the signal even when the signal was temporally delayed well into the No segment of the noise and suggested that the N pi segment of noise acted as a forward masker. To resolve this apparent conflict, the present study investigated the detectability of a brief S pi signal in the presence of an No masker of the same duration as the signal. The masker was preceded by quiet or an N pi forward fringe and followed by quiet, an No, or N pi backward fringe. The present study differs from most previous studies of the effects of the masker fringe in that the onset time of the signal was systematically varied to examine how masking changes during the time course of the complex fringe-masker-fringe stimulus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
This study investigates whether binaural signal detection is improved by the listener's previous knowledge about the interaural phase relations of masker and test signal. Binaural masked thresholds were measured for a 500-ms dichotic noise masker that had an interaural phase difference of 0 below 500 Hz and of pi above 500 Hz. The thresholds for two difference 20-ms test signals were determined within the same measurement using an interleaved adaptive 3-interval forced-choice (3IFC) procedure. In each 3IFC trial, both signals could occur with equal probability (uncertainty). The two signals differed in frequency and interaural phase in such a way that one signal always had a frequency above the masker edge frequency (500 Hz) and no interaural phase difference (So), whereas the other signal frequency was below 500 Hz and the interaural phase difference was pi (S pi). The frequencies of a signal pair remained fixed during the whole 3IFC track. These two signals thus lead to two different binaural conditions, i.e., NoS pi for the low-frequency signal and N pi So for the high-frequency signal. For comparison, binaural masked thresholds were measured with the same masker for fixed signal frequency and phase. The binaural masking level differences (BMLDs) resulting from the two experimental conditions show no significant difference. This indicates that the binaural system is able to apply different internal transformations or processing strategies simultaneously in different critical bands and even within the same critical band.  相似文献   

4.
Thresholds of a 5-ms, 1-kHz signal were determined in the presence of a frozen-noise masker. The noise had a flat power spectrum between 20 Hz and 5 kHz and was presented with a duration of 300 ms. The following interaural conditions were tested with four listeners: Noise and signal monaural at the same ear (monaural condition, NmSm), noise and signal identical at both ears (diotic condition, NoSo), noise identical at both ears and signal monaural (dichotic condition, NoSm) and uncorrelated noise at the two ears and signal monaural (NuSm). The signal was presented at a fixed temporal position with respect to the frozen noise in all measurements and thresholds were determined for different starting phases of the carrier frequency of the signal. Variation of the carrier phase strongly influenced the detection in the diotic condition and the masked thresholds varied by more than 10 dB. The pattern of thresholds for the monaural condition was less variable and the thresholds were generally higher than for the diotic condition. The monaural-diotic difference for specific starting phases amounted to as much as 8 dB. Comparison measurements using running noise maskers revealed no such difference. This relation between monaural and diotic thresholds was further investigated with eight additional subjects. Again, monaural and diotic thresholds in running noise were identical, while in frozen noise, diotic thresholds were consistently lower than monaural thresholds, even when the ear with the lower NmSm threshold was compared. For the starting phase showing the largest monaural-diotic difference, the thresholds for NoSm lay between the monaural and the diotic values. At other starting phases, the NoSm threshold was clearly lower than both the NmSm and the NoSo threshold. One possible explanation of the observed monaural-diotic differences relates to contralateral efferent interaction between the right and the left hearing pathway. A prediction based on this explanation was verified in a final experiment, where frozen-noise performance for NmSm was improved by simultaneously presenting an uncorrelated running noise to the opposite ear.  相似文献   

5.
In this paper previous experiments on auditory filter shapes in binaural masking experiments [A. Kohlrausch, J. Acoust. Soc. Am. 84, 573-583 (1988)] are extended to a wider range of masker and signal durations. The masker was a dichotic broadband noise with frequency-dependent interaural parameters. The interaural phase difference of the masker was 0 below 500 Hz and pi above 500 Hz. Signal frequency varied between 200 and 800 Hz, and the signal was presented either monaurally (Sm) or binaurally in antiphase (S pi). In the first experiment, the masker duration was fixed at 500 ms and signals of 250 and 20 ms were used. In the second experiment, the signal duration was fixed at 20 ms, and the masker duration was reduced to 25 ms. The results from both experiments are consistent with studies using No or N pi maskers: The binaural masking level difference (BMLD) increases slightly for shorter test signals and decreases strongly for short maskers. The BMLD patterns of the first experiment are well described by the auditory-filter model derived for stationary test signals, if the additional influence of "off-frequency listening" for the short test signal is taken into account. The BMLDs resulting from the second experiment (25-ms masker), however, are much lower than predicted by this filter model This outcome supports previous observations that binaural unmasking becomes less effective for very short masker durations and indicates that this effect is even stronger for maskers with a complex structure of interaural parameters.  相似文献   

6.
Detection thresholds for tones in narrow-band noise were measured for two binaural configurations: N(o)S(o) and N(o)S(pi). The 30-Hz noise band had a mean overall level of 65 dB SPL and was centered on 250, 500, or 5000 Hz. Signals and noise were simultaneously gated for 500, 110, or 20 ms. Three conditions of level randomization were tested: (1) no randomization; (2) diotic randomization--the stimulus level (common to both ears) was randomly chosen from an uniformly distributed 40-dB range every presentation interval; and (3) dichotic randomization--the stimulus levels for each ear were each independently and randomly chosen from the 40-dB range. Regardless of binaural configuration, level randomization had small effects on thresholds at 500 and 110 ms, implying that binaural masking-level differences (BMLDs) do not depend on interaural level differences for individual stimuli. For 20-ms stimuli, both diotic and dichotic randomization led to markedly poorer performance than at 500- and 110-ms durations; BMLDs diminished with no randomization and dichotic randomization but not with diotic randomization. The loss of BMLDs at 20 ms, with degrees-of-freedom (2WT) approximately 1, implies that changes in intracranial parameters occurring during the course of the observation interval are necessary for BMLDs when mean-level and mean-intracranial-position cues have been made unhelpful.  相似文献   

7.
A series of masking experiments was performed with the aim of comparing frequency selectivity for the monaural and binaural systems. The masking stimulus used in this study combined a sinusoid, which was gated simultaneously with the signal, with a continuous broadband noise. Signal frequency was fixed at 500 Hz. In one condition, the tonal masker and noise were interaurally in phase and the signal was phase reversed. In a second condition, noise, tonal masker, and signal were presented to one ear alone. Signal thresholds were obtained as a function of masker frequency for these two conditions. After making an appropriate selection of noise levels, masking functions for the monaural and binaural system conditions were found to agree closely except for a region about their tips where the binaural condition was more detectable. Two possible interpretations of these results are discussed. Either the monaural and binaural systems contain filters each which have similarly shaped skirts, or the frequency selectivity observed under both diotic and dichotic conditions (for large frequency separations of masker and signal) reflect the operation of a common peripheral filter.  相似文献   

8.
This study was designed to investigate the effects of masker level and frequency on binaural detection and interaural time discrimination. Detection and interaural time discrimination of a 700-Hz sinusoidal signal were measured as a function of the center frequency and level of a narrow-band masking noise. The masker was a continuous, diotic, 80-Hz-wide noise that varied in center frequency from 250 to 1370 Hz. In the detection experiment, the signal was presented either diotically (NoSo) or interaurally phase reversed (NoS pi). In the interaural time discrimination experiment, the signal level needed to discriminate a 30-microseconds interaural delay was measured. As would be expected, the presence of the masker has a greater effect on NoSo detection than NoS pi detection, and for masker frequencies at or near the signal frequency. In contrast, interaural time discrimination can be improved by the presence of a low-level masker. Also, performance improves more rapidly as the signal/masker frequency separation increases for NoSo detection than for interaural time discrimination and NoS pi detection. For all three tasks, significant upward spread of masking occurs only at the highest masker level; at low masker levels, there is a tendency toward downward spread of masking.  相似文献   

9.
Absence of overshoot in a dichotic masking condition   总被引:1,自引:0,他引:1  
Brief tonal signals presented soon after the onset of a masking noise are known to be less detectable than signals delayed by several hundred milliseconds. This difference in detectability is known as the "overshoot." Signals of two sorts were studied here--either interaurally in phase (S o) or interaurally out of phase by 180 degrees (S pi). When S omicron signals of 750 Hz and about 14 ms in duration were presented 4 ms after the onset of a diotic, broadband masking noise (N o), detectability was about 6 dB worse than when the signal was presented 325 ms after onset. By contrast, there was no such overshoot when S pi signals were presented at varying times after masker onset; detectability was about the same for all values of signal delay. Accordingly, the difference in performance between N o S o and N o S pi--the masking-level difference or MLD--was large (about 16 dB) with the shortest delays used and diminished (to about 9 dB) as the delay was increased. This absence of overshoot with the S pi signals is in accord with the well-established view that detectability in the dichotic masking conditions is based upon different stimulus information from that used in the diotic masking conditions. Specifically, the evidence confirms the common view that detectability in the diotic conditions is based more or less directly on neural firing rate, whereas, in the dichotic conditions, it is based upon interaural time differences encoded in the periodicity of neural firings.  相似文献   

10.
Several studies using bandlimited masking noise have indicated that NOSO frequency resolution is better than that for NOS pi. The present study examined NOSO and NOS pi frequency resolution with two different masking methods: bandlimited noise and notched noise. Noise spectrum levels of 10, 30, and 50 dB/Hz were used. Thresholds were determined for a 500-Hz signal, using a three-alternative forced-choice adaptive procedure, as a function of masker bandwidth and notchwidth. For NOSO presentation, 3-dB down points were comparable for the notched-noise and bandlimiting methods. For NOS pi presentation, 3-dB down points were generally greater for the bandlimiting method than the notched noise method. Furthermore, for NOS pi presentation, the 3-dB down estimate increased as noise level increased for the bandlimiting method, but stayed constant for the notched-noise method. It is suggested that the two masking methods measured different aspects of binaural processing.  相似文献   

11.
Modulation thresholds were measured in three subjects for a sinusoidally amplitude-modulated (SAM) wideband noise (the signal) in the presence of a second amplitude-modulated wideband noise (the masker). In monaural conditions (Mm-Sm) masker and signal were presented to only one ear; in binaural conditions (M0-S pi) the masker was presented diotically while the phase of modulation of the SAM noise signal was inverted in one ear relative to the other. In experiment 1 masker modulation frequency (fm) was fixed at 16 Hz, and signal modulation frequency (fs) was varied from 2-512 Hz. For monaural presentation, masking generally decreased as fs diverged from fm, although there was a secondary increase in masking for very low signal modulation frequencies, as reported previously [Bacon and Grantham, J. Acoust. Soc. Am. 85, 2575-2580 (1989)]. The binaural masking patterns did not show this low-frequency upturn: binaural thresholds continued to improve as fs decreased from 16 to 2 Hz. Thus, comparing masked monaural and masked binaural thresholds, there was an average binaural advantage, or masking-level difference (MLD) of 9.4 dB at fs = 2 Hz and 5.3 dB at fs = 4 Hz. In addition, there were positive MLDs for the on-frequency condition (fm = fs = 16 Hz: average MLD = 4.4 dB) and for the highest signal frequency tested (fs = 512 Hz: average MLD = 7.3 dB). In experiment 2 the signal was a SAM noise (fs = 16 Hz), and the masker was a wideband noise, amplitude-modulated by a narrow band of noise centered at fs. There was no effect on monaural or binaural thresholds as masker modulator bandwidth was varied from 4 to 20 Hz (the average MLD remained constant at 8.0 dB), which suggests that the observed "tuning" for modulation may be based on temporal pattern discrimination and not on a critical-band-like filtering mechanism. In a final condition the masker modulator was a 10-Hz-wide band of noise centered at the 64-Hz signal modulation frequency. The average MLD in this case was 7.4 dB. The results are discussed in terms of various binaural capacities that probably play a role in binaural release from modulation masking, including detection of varying interaural intensity differences (IIDs) and discrimination of interaural correlation.  相似文献   

12.
The shape of the auditory filter was calculated from binaural masking experiments. Two different types of maskers were used in the study, a masker that was interaurally in phase at all frequencies (No), and a masker with an interaural phase difference of 0 below 500 Hz and of pi above 500 Hz. The test-signal frequency varied between 200 and 800 Hz, and the test signal was presented either monaurally (Sm) or binaurally in antiphase (S pi). By comparing the masked thresholds from the two experimental conditions, the following conclusion can be drawn: The threshold of the test signal is only affected by the masker phase within a narrow frequency range around the test frequency. Thus, for test-signal frequencies well above or below 500 Hz, no influence of the phase transition on the BMLD is observed, and normal masked thresholds for No and N pi maskers are obtained. For test frequencies around 500 Hz, the step in interaural phase difference leads to a decrease in the interaural correlation of the masker within the critical band around the test-signal frequency. This results in strong threshold changes for both monaural and binaural signals. A calculation of the auditory filter shape from the masked threshold values was performed under the assumption that the masked threshold is only dependent on the interaural cross correlation of the masker within the filter band. Using the formula of the EC theory for the relation between masker correlation and BMLD, the experimental data are well described by a trapezoidal filter with an equivalent rectangular bandwidth of 80 to 84 Hz.  相似文献   

13.
In experiment I, thresholds for 400-ms sinusoidal signals were measured in the presence of a continuous 25-Hz-wide noise centered at signal frequencies (fs) ranging from 250 to 8000 Hz in 1-oct steps. The masker was presented either alone or together with a second continuous 25-Hz-wide band of noise (the flanking band) whose envelope was either correlated with that of the on-frequency band or was uncorrelated; its center frequency ranged from 0.5 fs to 1.5 fs. The flanking band was presented either in the same ear (monotic condition) as the signal plus masker or in the opposite ear (dichotic condition). The on-frequency band and the flanking band each had an overall level of 67 dB SPL. The comodulation masking release, CMR (U-C), is defined as the difference between the thresholds for the uncorrelated and correlated conditions. The CMR (U-C) showed two components: a broadly tuned component, occurring at all signal frequencies and all flanking-band frequencies, and occurring for both monotic and dichotic conditions; and a component restricted to the monotic condition and to flanking-band frequencies close to fs. This sharply tuned component was small for low signal frequencies, increased markedly at 2000 and 4000 Hz, and decreased at 8000 Hz. Experiment II showed that the sharply tuned component of the CMR (U-C) was slightly reduced in magnitude when the level of the flanking band was 10 dB above that of the on-frequency band and was markedly reduced when the level was 10 dB below, whereas the broadly tuned component and the dichotic CMR (U-C) were only slightly affected. Experiment III showed that the sharply tuned component of the CMR (U-C) was markedly reduced when the bandwidths of the on-frequency and flanking bands were increased to 100 Hz, while the broadly tuned component and the dichotic CMR (U-C) decreased only slightly. The argument here is that the sharply tuned component of the monotic CMR (U-C) results from beating between the "carrier" frequencies of the two masker bands. This introduces periodic zeros in the masker envelope, which facilitate signal detection. The broadly tuned component, which is probably a "true" CMR, was only about 3 dB.  相似文献   

14.
Experiment 1 measured rate discrimination of electric pulse trains by bilateral cochlear implant (CI) users, for standard rates of 100, 200, and 300 pps. In the diotic condition the pulses were presented simultaneously to the two ears. Consistent with previous results with unilateral stimulation, performance deteriorated at higher standard rates. In the signal interval of each trial in the dichotic condition, the standard rate was presented to the left ear and the (higher) signal rate was presented to the right ear; the non-signal intervals were the same as in the diotic condition. Performance in the dichotic condition was better for some listeners than in the diotic condition for standard rates of 100 and 200 pps, but not at 300 pps. It is concluded that the deterioration in rate discrimination observed for CI users at high rates cannot be alleviated by the introduction of a binaural cue, and is unlikely to be limited solely by central pitch processes. Experiment 2 performed an analogous experiment in which 300-pps acoustic pulse trains were bandpass filtered (3900-5400 Hz) and presented in a noise background to normal-hearing listeners. Unlike the results of experiment 1, performance was superior in the dichotic than in the diotic condition.  相似文献   

15.
Temporal modulation transfer functions (TMTFs) were measured for detection of monaural sinusoidal amplitude modulation and dynamically varying interaural level differences for a single set of listeners. For the interaural TMTFs, thresholds are the modulation depths at which listeners can just discriminate interaural envelope-phase differences of 0 and 180 degrees. A 5-kHz pure tone and narrowband noises, 30- and 300-Hz wide centered at 5 kHz, were used as carriers. In the interaural conditions, the noise carriers were either diotic or interaurally uncorrelated. The interaural TMTFs with tonal and diotic noise carriers exhibited a low-pass characteristic but the cutoff frequencies changed nonmonotonically with increasing bandwidth. The interaural TMTFs for the tonal carrier began rolling off approximately a half-octave lower than the tonal monaural TMTF (approximately 80 Hz vs approximately 120 Hz). Monaural TMTFs obtained with noise carriers showed effects attributable to masking of the signal modulation by intrinsic fluctuations of the carrier. In the interaural task with dichotic noise carriers, similar masking due to the interaural carrier fluctuations was observed. Although the mechanisms responsible for differences between the monaural and interaural TMTFs are unknown, the lower binaural TMTF cutoff frequency suggests that binaural processing exhibits greater temporal limitation than monaural processing.  相似文献   

16.
Two experiments were performed to determine the effects of random intensity fluctuation on NoSo and NoS pi performance. Noise was used as both signal and masker, and stimuli were bands of noise from either 0-2.0 or 2.0-4.0kHz. Signal and masker were either coherent (from the same source) or noncoherent (from independent sources). In the first experiment, noise fluctuation was achieved by modulating a wide band of noise. In the second experiment, fluctuation was achieved by narrowing the noise bandwidth. Results from both experiments indicated that NoSo performance was adversely affected by fluctuation and by noncoherent relation between signal and masker. NoS pi detection was not adversely affected by fluctuation at low frequency, and was affected less adversely than was NoSo detection at high frequency. This difference between NoSo and NoS pi performance is an important consideration when making inferences about monaural and binaural processing when the stimuli are fluctuating rather than temporally steady.  相似文献   

17.
Detection of tones in reproducible narrow-band noise   总被引:2,自引:0,他引:2  
Hit and false-alarm rates were measured for detection of a 500-Hz tone target in each of ten reproducible samples of 1/3-oct bandwidth noise centered at 500 Hz for both NoS pi and NoSo conditions. The effects on hit rates of the starting phase of the target relative to individual noise samples were investigated with two target phase angles for three subjects. The major results are: (1) performance varies significantly over masker waveforms; (2) for NoS pi conditions, the effect of target-to-marker phase angle on hit rates is not significant for these narrow-band maskers; (3) for NoSo conditions, the target-to-masker phase angle has a large effect; (4) no significant correlation between NoSo performance and NoS pi performance is seen across masker waveforms. These results are generally consistent wuth previously reported results for wideband maskers [R.H. Gilkey, D.E. Robinson, and T.E. Hanna, "Effects of masker waveform and signal-to-masker phase relation on diotic and dichotic masking by reproducible noise," J. Acoust. Soc. Am. 78, 1207-1219 (1985)] with an important exception. Specifically, in the wideband experiment, significant correlation between NoSo and NoS pi performance across noise samples was found. In addition, in the wideband experiment, a small yet statistically significant effect of target-to-masker phase was observed in the NoS pi condition.  相似文献   

18.
The method of G?ssler [Acustica 4, 408-414 (1954)] was used to measure the audibility of multicomponent signals as a function of their bandwidth against a broadband, white-noise masker. Test signals were composed of 1 to 41 sinusoids with a spectral spacing of 10 Hz and were always spectrally centered around 400 Hz. Masker duration was 400 ms and the 300-ms signals were centered within the noise intervals. A three-interval forced-choice procedure with adaptive level adjustment was applied. NoSo, NoSm, NoS pi, and N pi So masked thresholds were obtained for four subjects. A comparison of the diotic and the three dichotic conditions yields no significant difference in the bandwidth dependence and suggests equal integration bandwidths for all conditions. However, the original results of G?ssler could not be replicated: Neither were the overall levels of signals with a bandwidth below the critical bandwidth constant nor were the results for broadband signals in accordance with a single-band model of detection. The narrow-band data are much better described by calculating the overall signal level at the output of a rounded exponential filter [Patterson et al., J. Acoust. Soc. Am. 72, 1788-1803 (1982)] with an equivalent rectangular bandwidth of 65 Hz. For broader signal bandwidths, the signal level at threshold increases as predicted by a multiband model.  相似文献   

19.
Temporal gap detection was measured as a function of absolute signal bandwidth at a low-, a mid-, and a high-frequency region in six listeners with normal hearing sensitivity. Gap detection threshold decreased monotonically with increasing stimulus bandwidth at each of the three frequency regions. Given conditions of equivalent absolute bandwidth, gap detection thresholds were not significantly different for upper cutoff frequencies ranging from 600 to 4400 Hz. A second experiment investigated gap detection thresholds at two pressure-spectrum levels, conditions typically resulting in substantially different estimates of frequency selectivity. Estimates of frequency selectivity were collected at the two levels using a notched-noise masker technique. The gap threshold-signal bandwidth functions were almost identical at pressure-spectrum levels of 70 dB and 40 dB for the two subjects in experiment II, while estimates of frequency selectivity showed poorer frequency selectivity at the 70-dB level than at 40 dB. Data from both experiments indicated that gap detection in bandlimited noise was inversely related to signal bandwidth and that gap detection did not vary significantly with changes in signal frequency over the range of 600 to 4400 Hz. Over the range of frequencies investigated, the results indicated no clear relation between gap detection for noise stimuli and peripheral auditory filtering.  相似文献   

20.
NoSo and NoS pi detection thresholds for a 500-Hz pure-tone signal were measured as a function of masking noise bandwidth in normal-hearing and cochlear hearing-impaired subjects. NoSo and NoS pi critical bands were derived from the bandlimited noise functions. A notched noise measure of the monaural critical band was also obtained for each ear. One hypothesis tested was that an asymmetrical monaural critical band would result in a relatively steep improvement of the NoS pi detection threshold as a function of decreasing masker bandwidth and would, therefore, be associated with a wider binaural critical band. This was hypothesized because the outputs of the left and right auditory filters would be more decorrelated the greater the interaural difference in the monaural critical band. However, as the noise bandwidth was narrowed, the decorrelation would lessen, resulting in a relatively steep improvement in NoS pi detection. Results indicated that the masking level difference (MLD) was smaller and that the monaural critical bands were generally wider in cochlear-impaired listeners. NoSo and NoS pi critical bands were somewhat larger in the cochlear hearing-impaired listeners having relatively wide monaural critical bands. There was a significant correlation between monaural critical band asymmetry and the NoS pi critical band; however, this correlation was insignificant when a control was employed for the critical band in the worse ear. Therefore, the present results did not support a strong association between monaural critical band asymmetry and the width of the NoS pi critical band.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号