首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Size effects on the phonon modes have been unambiguously observed on single individual titanium dioxide (TiO2) nanowire using Raman spectroscopy. A template-free oxidation process using ethanol vapor was developed to control the growth and the density, length, and size distribution of the TiO2 nanowires. Scanning electron microscopy, transmission electron microscopy, and X-ray diffraction were used to characterize the morphology, crystalline phases and microstructures. Using a confocal laser probe, Raman spectroscopy revealed in the individual rutile TiO2 nanowire, the Eg, A1g vibration modes which are confined in the radial directions. Along the single-crystalline nanowire axis, the systematic size-dependent variations in the center-shift, broadening as well as the shape asymmetry of the Raman peaks can be well explained in terms of the phonon confinement model.  相似文献   

2.
Oriented single crystalline titanium dioxide (TiO2) nano-pillar arrays were directly synthesized on the Ti plate in tetramethylammonium hydroxide (TMAOH) solution by one-pot hydrothermal method. The samples were characterized respectively by means of field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and X-ray diffraction (XRD). Results showed that the TiO2 nano-pillar with a tetrahydral bipyramidal tip grew vertically on the titanium substrate. HRTEM and Raman results confirmed that the TiO2 nano-pillar arrays were single crystalline anatase. The controls of morphology, size, and orientation of the nano-pillar could be achieved by varying the solution concentration and hydrothermal temperature. Furthermore, the special morphology of the TiO2 nano-pillar arrays was caused by the selectively absorption of the tetramethylammonium (TMA) through hydrogen bonds on the lattice planes parallel to (0 0 1) of anatase TiO2. Less grain boundaries and direct electrical pathway for electron transferring were crucial for the superior photoelectrochemical properties of the single anatase TiO2 nano-pillar arrays. This approach provides a facile in situ method to synthesize TiO2 nano-pillar arrays with a special morphology on titanium substrate.  相似文献   

3.
A series of cauliflower-like TiO2-ZnO composite porous films with various molar ratios of Zn/Ti were prepared by the screen printing technique on the fluorine-doped SnO2 (FTO) conducting glasses. The composite films were characterized by field-emission scanning electron microscopy (FE-SEM), X-ray energy-dispersive spectrometry (EDS) and UV-vis transmittance spectrum. The results showed composite film electrode had a novel cauliflower-like morphology, which could effectively increase the dye absorption. The corresponding dye-sensitized solar cells (DSCs) were made by the composite film, and effects of ZnO incorporation on the photovoltaic performances of the DSCs were studied. With the Zn/Ti molar ratio not more than 3% in ZnO-TiO2 composite film of about 5 μm-thickness, the photocurrent density (Jsc) and the solar-to-electricity conversion efficiency (η) were greatly improved compared with those of the DSC based on bare TiO2 film of same thickness. This increases in efficiency and Jsc were attributed to high electron conductivity of ZnO, the improved dye adsorption and large light transmittance of composite film.  相似文献   

4.
Transparent TiO2 nanotube arrays of micrometer lengths were prepared by anodization of titanium thin film RF sputtered on indium tin oxide (ITO) which was coated on glass substrate. The sputtering process took place at elevated temperature of 500 °C. The structures of the films were studied using scanning electron microscopy (SEM) and X-ray diffraction (XRD) while the optical properties of the films were investigated using UV-visible spectroscopy. Two types of electrolytes were used in this work: an aqueous mixture of acetic acid and HF solution and a mixture of NH4F and water dissolved in ethylene glycol. The concentration of NH4F, voltage and the thickness of the sputtered titanium film were varied to study their effect on the formation of TiO2 nanotube arrays. It is demonstrated in this work that the nanoporous layer is formed on top of the ordered array of TiO2 nanotubes. Furthermore, the optical transmittance of TiO2 nanotubes annealed at 450 °C is much lower than the non annealed TiO2 nanotubes in the visible wavelength region.  相似文献   

5.
以导电聚苯胺为空穴传输材料,制备了固态染料敏化太阳电池(DSC).利用强度调制光电流谱(IMPS)和强度调制光电压谱(IMVS)研究了TiO2多孔膜内的电子输运及复合过程.通过TiO2多孔膜内电子的平均传输时间(τd)和电子寿命(τn)及对IMPS实验数据的拟合,获得电子在TiO2膜内的有效扩散系数(Dn)和扩散长度(Ln).这些聚苯胺基电池中的τn值为相应的液体型电池的1/10倍左右,表明在该固体电池中存在严重的光生电子的复合过程,这很可能主要是与氧化态染料分子和导电电子间的复合有关.随着TiO2膜厚的增加,τnτd均变小,但DnLn随之增加,只有在合适的膜厚范围内才能获得较高的光伏性能. 关键词: 聚苯胺 染料敏化太阳电池 IMPS IMVS  相似文献   

6.
The oriented ZnO nanorod arrays have been synthesized on a silicon wafer that coated with TiO2 films by aqueous chemical method. The morphologies, phase structure and the photoluminescence (PL) properties of the as-obtained product were investigated by field-emission scanning electron microscopy (FE-SEM), X-ray diffractometer (XRD), transmission electron microscope (TEM) and PL spectrum. The nanorods were about 100 nm in diameter and more than 1 μm in length, which possessed wurtzite structure with a c axis growth direction. The room-temperature PL measurement of the nanorod arrays showed strong ultraviolet emission. The effect of the crystal structure and the thickness of TiO2 films on the morphologies of ZnO nanostructures were investigated. It was found that the rutile TiO2 films were appropriate to the oriented growth of ZnO nanorod arrays in comparison with anatase TiO2 films. Moreover, flakelike ZnO nanostructures were obtained with increasing the thickness of anatase TiO2 films.  相似文献   

7.
姜玲  张昌能  丁勇  莫立娥  黄阳  胡林华  戴松元 《物理学报》2015,64(1):17301-017301
本文主要利用TiO2亚微米球较强的光散射特性设计了纳米TiO2颗粒/亚微米球多层结构光阳极, 并借助强度调制光电流谱(intensity-modulated photocurrent spectroscopy)、电化学阻抗谱(electrochemical impedance spectroscopy)和入射单色光光电转化效率(incident photon-to-current conversion efficiency), 研究亚微米球的引入对多层结构薄膜内缺陷态、电子传输时间、电子收集效率和界面电荷转移性能的影响. 强度调制光电流谱反映出亚微米球表面缺陷态少, 但其颗粒间接触不紧密, 导致在接触部位形成了势垒, 阻碍了电子的传输, 导致电子传输时间增长. 电化学阻抗谱结果表明不同多层结构电池界面复合无明显差别, 同时底层采用纳米TiO2 透明薄膜结构的电池, 其光利用率要明显高于底层采用亚微米球薄膜结构的电池, TiO2费米能级电子填充水平也相对增大, 使得电池的光电转换效率得到提升. 多层结构复合薄膜电荷传输和光伏特性的研究, 为高效染料敏化太阳电池光阳极设计提供了实验基础.  相似文献   

8.
Pure and Nb-doped titanium oxide thin films were grown on sapphire substrates by pulsed-laser deposition in vacuum (10−7 mbar). The PLD growth leads to titanium oxide thin films displaying a high oxygen deficiency (TiO1.5) compared with the stoichiometric TiO2 compound. The structural and electrical properties (phase, crystalline orientation, nature and concentration of charge carriers, etc.) of these titanium oxide films were studied by XRD measurements and Hall effect experiments, respectively. The undoped TiO1.5 phase displayed a p-type semiconductivity. Doping this titanium oxide phase with Nb5+ leads to an n-type behaviour as is generally observed for titanium oxide films with oxygen deficiency (TiOx with 1.7 < x < 2). Multilayer homojunctions were obtained by the stacking of TiO1.5 (p-type) and Nb-TiO1.5 (n-type) thin films deposited onto sapphire substrates. Each layer is 75 nm thick and the resulting heterostructure shows a good transparency in the visible range. Finally, the I-V curves obtained for such systems exhibit a rectifying response and demonstrate that it is possible to fabricate p-n homojunctions based only on transparent conductive oxide thin films and on a single chemical compound (TiOx).  相似文献   

9.
通过脉冲电沉积,外延生长出小单元长度的Bi2Te3/Sb超晶格纳米线.借助哈曼方法,测量了超晶格纳米线阵列的热电性能,330 K时的ZT值可达0.15.研究了Bi2Te3/Sb超晶格纳米线阵列器件的制冷或者加热能力,发现器件的上下表面的最大温差可以达到6.6 K.  相似文献   

10.
The ZnO nanowire (NW) array/TiO2 nanoparticle (NP) composite photoelectrode with controllable NW aspect ratio has been grown from aqueous solutions for the fabrication of dye-sensitized solar cells (DSSCs), which combines the advantages of the rapid electron transport in ZnO NW array and the high surface area of TiO2 NPs. The results indicate that the composite photoelectrode achieves higher overall photoelectrical conversion efficiency (η) than the ZnO NW alone. As a result, DSSCs based on the ZnO NW array/TiO2 NP composite photoelectrodes get the enhanced photoelectrical conversion efficiency, and the highest η is also achieved by rational tuning the aspect ratio of ZnO NWs. With the proper aspect ratio (ca. 6) of ZnO NW, the ZnO NW array/TiO2 NP composite DSSC exhibits the highest conversion efficiency (5.5 %). It is elucidated by the dye adsorption amount and interfacial electron transport of DSSCs with the ZnO NW array/TiO2 NP composite photoelectrode, which is quantitatively characterized using the UV-Vis absorption spectra and electrochemical impedance spectra. It is evident that the DSSC with the proper aspect ratio of ZnO NW displays the high dye adsorption amount and fastest interfacial electron transfer.  相似文献   

11.
A dependence of structural properties of TiO2 films grown on both Si- and Ti-substrates by atomic layer deposition (ALD) at the temperature range of 250-300 °C from titanium ethoxide and water on the number of reaction cycles N was investigated using Fourier-transform infrared (FTIR) spectroscopy and X-Ray diffraction (XRD). TiO2 films grown on both Si- and Ti-substrates revealed amorphous structure at low values of N < 400. However, an increase of N up to values 400-3600 resulted in the growth of polycrystalline TiO2 with structure of anatase on both types of substrates and according to XRD-measurements the sizes of crystallites rose with the increase of N. The maximum anatase crystallite size for TiO2 grown on Ti-substrate was found to be on ∼35% lower in comparing with that for TiO2 grown on Si-substrate. A use of titanium methoxide as a Ti precursor with the ligand size smaller than in case of titanium ethoxide allowed to observe an influence of the ligand size on both the growth per cycle and structural properties of TiO2. The average growth per cycle of TiO2 deposited from titanium methoxide and water (0.052 ± 0.01 nm/cycle) was essentially higher than that for TiO2 grown from titanium ethoxide and water (0.043 ± 0.01 nm/cycle). Ligands of smaller sizes were found to promote the higher crystallinity of TiO2 in comparison with the case of using the titanium precursor with ligands of bigger sizes.  相似文献   

12.
Bi2SiO5 modified Si nanowire array films were fabricated as photo-catalysts via dip-coating Bi(NO3)3 on silver-assisted electroless wet chemical etching Si nanowires and subsequently annealing. The structures and morphologies of as-prepared samples are characterized by X-ray diffraction, Fourier transform infrared spectrum, scanning electron microscopy and transmission electron microscopy. The results of photocatalytic experiments indicated that the Bi2SiO5 modified Si nanowire arrays benefit the improvement for efficient electron-hole separation and photo-catalytic stability, thereby possessing superior photo-degradation performance. These hybrid nanowire arrays will be promising materials for photo-catalysts and degradation agents.  相似文献   

13.
CdS quantum dot (Qd)-sensitized TiO2 nanotube array photoelectrode is synthesised via a two-step method on tin-doped In2O3-coated (ITO) glass substrate. TiO2 nanotube arrays are prepared in the ethylene glycol electrolyte solution by anodizing titanium films which are deposited on ITO glass substrate by radio frequency sputtering. Then, the CdS Qds are deposited on the nanotubes by successive ionic layer adsorption and reaction technique. The resulting nanotube arrays are characterized by scanning electron microscopy, X-ray diffraction (XRD) and UV–visible absorption spectroscopy. The length of the obtained nanotubes reaches 1.60 μm and their inner diameter and wall thickness are around 90 and 20 nm, respectively. The XRD results show that the as-prepared TiO2 nanotubes array is amorphous, which are converted to anatase TiO2 after annealed at 450 °C for 2 h. The CdS Qds deposited on the TiO2 nanotubes shift the absorption edge of TiO2 from 388 to 494 nm. The results show that the CdS-sensitized TiO2 nanotubes array film can be used as the photoelectrode for solar cells.  相似文献   

14.
Nanostructured titanium dioxide (ns-TiO2) films were grown by supersonic cluster beam deposition method. Transmission electron microscopy demonstrated that films are mainly composed by TiO2 nanocrystals embedded in an amorphous TiO2 phase while their electronic structure was studied by photoemission spectroscopy. The cluster assembled ns-TiO2 films are expected to exhibit several structural and chemical defects owing to the large surface to volume ratio of the deposited clusters. Ultraviolet photoemission spectra (hv = 50 eV) from the valence band unveil the presence of a restrained amount of surface Ti 3d defect states in the band gap, whereas Ti 2p core level X-ray photoelectron (hv = 630 eV) spectra do not manifestly disclose these defects.  相似文献   

15.
Dense and well-oriented rutile TiO2 nanorod arrays were synthesized on a titanium substrate using the organic compound dibutyltin dilaurate as the oxygen source in the oxidation of Ti at 850 °C. The influence of temperature on the nanostructured TiO2 formation and the effect of the TiO2 structures on their wettability were also investigated. Polycrystalline TiO2 grains were formed at 800 °C; in contrast, TiO2 micro-whiskers were grown on the Ti substrate at 900 °C. The measurement of the water contact angle shows that the wetting property of the TiO2 films strongly depends on their surface structure. The surface of the dense well-oriented nanorod arrays is highly hydrophobic with a water contact angle of 130 °C. This study has demonstrated that the direct oxidation of Ti substrate using an organic oxygen source is a promising method for fabrication of large scale, uniform and well-aligned TiO2 nanorod arrays on titanium substrates. PACS 81.16.-Be; 81.20.ka; 82.4c.Cc; 68.37.Hk  相似文献   

16.
The photoanodes of solid state dye sensitized solar cells (ss-DSCs) embedded with different contents of TiO2 hollow spheres (HSs) were prepared and the photovoltaic performances were systematically characterized. TiO2 hollow spheres were synthesized by a facile sacrificial templating method, grounded and added in different ratios to TiO2 nanoparticle (NP) paste, from which composite HS/NP electrodes were fabricated. The composite photoanodes include hollow spheres of 300–700 nm with enhanced light scattering characteristics in visible range which leads to improved light absorption in conventional thin film electrodes of ss-DSC. By optimizing the amount of HSs in the paste, 40% improvement in efficiency was obtained in comparison to ss-DSC utilized pure NP electrodes. By increasing the fraction of HSs in the electrode the current density increased by 56% (from 2.5 to 3.9 mA cm?2). The improved photovoltaic performance of ss-DSC is primarily due to different morphology and altered charged trap distribution in HSs in comparison to NP which leads to significant enhancement in electron transport time and electron lifetime as well as charge collection efficiency and light absorption properties.  相似文献   

17.
This paper focuses the influence of porous morphology on the microstructure and optical properties of TiO2 films prepared by different sol concentration and calcination temperatures. Mesoporous TiO2 thin films were prepared on the glass substrates by sol-gel dip coating technique using titanium (IV) isopropoxide. Porous morphology of the films can be regulated by chemical kinetics and is studied by scanning electron microscopy. The optical dispersion parameters such as refractive index (n), oscillator energy (Ed), and particle co-ordination number (Nc) of the mesoporous TiO2 films were studied using Swanepoel and Wemple-DiDomenico single oscillator models. The higher precursor concentration (0.06 M), films exhibit high porosity and refractive index, which are modified under calcination treatment. Calcinated films of low metal precursor concentration (0.03 M) possess higher particle co-ordination number (Nc = 5.05) than that of 0.06 M films (Nc = 4.90) due to calcination at 400 °C. The lattice dielectric constant (E) of mesoporous TiO2 films was determined by using Spintzer model. Urbach energy of the mesoporous films has been estimated for both concentration and the analysis revealed the strong dependence of Urbach energy on porous morphology. The influence of porous morphology on the optical dispersion properties also has been explained briefly in this paper.  相似文献   

18.
Hydrothermal process has been employed to synthesize titanium oxide (TiO2) bottle brush. The nanostructured bottle brushes with tetragonal nanorods of ~75 nm diameter have been synthesized by changing the nature of the precursors and hydrothermal processing parameters. The morphological features and structural properties of TiO2 films were investigated by field emission scanning electron microscopy, X-ray diffraction, high-resolution transmission electron spectroscopy, Fourier transform Raman spectroscopy, and X-ray photoelectron spectroscopy. The influence of such nanostructures on the performance of dye-sensitized solar cells (DSSCs) is investigated in detail. The interface and transient properties of these nanorods and bottle brush-based photoanodes in DSSCs were analyzed by electrochemical impedance spectroscopic measurements in order to understand the critical factors contributing to such high power conversion efficiency. Surface area of sample was recorded using Brunauer–Emmett–Teller measurements. It is found that bottle brush provides effective large surface area 89.34 m2 g?1 which is much higher than TiO2 nanorods 63.7 m2 g?1. Such effective surface area can facilitate the effective light harvesting, and hence improves the dye adsorption and the photovoltaic performance of DSSCs, typically in short-circuit photocurrent and power conversion efficiency. A best power conversion efficiency of 6.63 % has been achieved. We believe that the present device performance would have wide interests in dye-sensitized solar cell research.  相似文献   

19.
We have demonstrated an approach for the electrostatic assembly of CdTe quantum dots (QDs) with different charged ligands as sensitizers, achieving high coverage and good dispersion in TiO2 porous films. The CdTe QD-sensitized TiO2 porous films were subjected to thermal annealing in a high vacuum chamber to remove the ligand linker, resulting in the formation of direct heterojunctions between the bare CdTe QDs and TiO2 for a favorable charge transfer. The as-received CdTe QD-sensitized TiO2 porous films were employed as photoanodes for quantum dot-sensitized solar cells (QSSCs), and the photocurrent density reached as high as 4.69 mA/cm2 under a standard illumination condition of simulated AM 1.5G (100 mW/cm2).  相似文献   

20.
Nb-doped TiO2−x thin films were deposited using a 1 at% niobium doped titanium target by RF reactive magnetron sputtering at various oxygen partial pressures (pO2). The films appeared amorphous in the pO2 range of 4.4–4.7% with resistivity ranging from 0.39 Ω cm to 2.48 Ω cm. Compared to pure TiO2−x films, the resistivity of the Nb-doped TiO2−x films did not change sensitively with the oxygen partial pressure, indicating that the resistivity of the films can be accurately controlled. 1/f noise parameter of Nb-doped TiO2−x films were found to decrease largely while the measured temperature coefficient of resistance (TCR) of the films was still high. The obtained results indicate that Nb-doped TiO2−x films have great potential as an alternative bolometric material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号