首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Herein, nanometer‐scale morphologies of graft‐copolymer‐like supramolecular thin films, composed of sulfonic acid terminated polystyrene (SPS) and poly(2‐vinylpyridine) (P2VP), and their application to antireflection coatings were investigated. The intermolecular complexes of SPS and P2VP, formed through nonstoichiometric multiple hydrogen bonding between the sulfonic acid group of SPS and the nitrogen atom in pyridine unit of P2VP, occurring in film deposition allowed for the formation of spherical micelles (with SPS and P2VP as the corona and core, respectively) in the thin film. Interestingly, the domain size of the micelles was tunable from approximately 20 to 90 nm on average by controlling either the blend ratio of components or the concentration of polymer solution. Furthermore, nanoporous thin films could be easily prepared by removing the core of micelle‐based nanostructures by using a simple solvent etching process, leaving sulfonic acid groups on the surface of nanopores, which can be utilized as potential functional sites. Those resultant nanoporous thin films were conveniently employed as an antireflection layer on a glass substrate, giving a maximum 97.8 % transmittance in the visible wavelength range.  相似文献   

2.
We introduce a novel and versatile approach for preparing self-assembled nanoporous multilayered films with tunable optical properties. Protonated polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) and anionic polystyrene-block-poly(acrylic acid) (PS-b-PAA) block copolymer micelles (BCM) were used as building blocks for the layer-by-layer assembly of BCM multilayer films. BCM film growth is governed by electrostatic and hydrogen-bonding interactions between the opposite BCMs. Both film porosity and film thickness are dependent upon the charge density of the micelles, with the porosity of the film controlled by the solution pH and the molecular weight (M(w)) of the constituents. PS(7K)-b-P4VP(28K)/PS(2K)-b-PAA(8K) films prepared at pH 4 (for PS(7K)-b-P4VP(28K)) and pH 6 (for PS(2K)-b-PAA(8K)) are highly nanoporous and antireflective. In contrast, PS(7K)-b-P4VP(28K)/PS(2K)-b-PAA(8K) films assembled at pH 4/4 show a relatively dense surface morphology due to the decreased charge density of PS(2K)-b-PAA(8K). Films formed from BCMs with increased PS block and decreased hydrophilic block (P4VP or PAA) size (e.g., PS(36K)-b-P4VP(12K)/PS(16K)-b-PAA(4K) at pH 4/4) were also nanoporous. This is attributed to a decrease in interdigitation between the adjacent corona shells of the low M(w) BCMs, thus creating more void space between the micelles. Multilayer films with antireflective and photochromic properties were obtained by incorporating a water-insoluble photochromic dye (spiropyran) into the hydrophobic PS core of the BCMs assembled in the films. The optical properties of these films can be modulated by UV irradiation to selectively and reversibly control the transmission of light. Light transmission of higher than 99% was observed with accompanying photochromism in the (PS(7K)-b-P4VP(28K)/PS(2K)-b-PAA(8K)) multilayer films assembled at pH 4/6. Our approach highlights the potential to incorporate a range of materials, ranging from conventional hydrophilic materials with specific interactions to hydrophobic compounds, into the assembled BCMs to yield multifunctional nanoporous films.  相似文献   

3.
We report a new method to control both the nucleation and growth of highly porous polyaniline (PANI) nanofiber films using porous poly(styrene-block-2-vinylpyridine) diblock copolymer (PS-b-P2VP) films as templates. A micellar thin film composed of P2VP spheres within a PS matrix is prepared by spin coating a PS-b-P2VP micellar solution onto substrates. The P2VP domains are swollen in a selective solvent of acetic acid, which results in the formation of pores in the block copolymer film. PANI is then deposited onto the substrates modified with such a porous film using electrochemical methods. During the deposition, the nucleation and growth of PANI occur only at the pores of the block copolymer film. After the continued growth of PANI by the electrochemical deposition, a porous PANI nanofiber film is obtained.  相似文献   

4.
采用氯仿作为铺展溶剂,将嵌段共聚物聚苯乙烯-聚(4-乙烯基吡啶)(PS-b-P4VP)稀溶液铺展于空气与水界面上,利用Langmuir-Blodgett(LB)膜技术转移至固体基底.研究了不同的嵌段比、表面压和小分子1-芘丁酸(PBA)的加入对嵌段共聚物气液界面聚集组装的影响.研究发现随着亲水段(P4VP)的增加,聚集组装结构由纳米片状、带状转变成纳米条状、纳米点状结构.表面压对纯PS-b-P4VP聚集组装产生影响,表面压增大,组装体排列紧密;随着表面压的继续增大,单层聚集结构遭到破坏,发生堆叠.加入PBA小分子后,PBA与PS-b-P4VP形成氢键,形态发生明显变化,原来的片状结构转变为条状或点状结构.  相似文献   

5.
Blends of self‐assembling polystyrene‐block‐poly(4‐vinyl pyridine) (PS‐b‐P4VP) diblock‐copolymers and poly(4‐vinyl pyridine) (P4VP) homopolymers were used to fabricate isoporous and nanoporous films. Block copolymers (BCP) self‐assembled into a structure where the minority component forms very uniform cylinders, while homopolymers, resided in the core of the cylinders. Selective removal of the homopolymers by ethanol immersion led to the formation of well‐ordered pores. In films without added homopolymer, just immersion in ethanol and subsequent swelling of the P4VP blocks was found to be sufficient to create pores. Pore sizes were tuned between 10 and 50 nm by simply varying the homopolymer content and the molecular weight of the block‐copolymer. Uniformity was lost when the average pore size exceeded 30 nm because of macrophase separation. However, preparation of films from low MW diblock copolymers showed that it is possible to have excellent pore size control and a high porosity, while retaining a low pore size distribution. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1568–1579  相似文献   

6.
《化学:亚洲杂志》2017,12(16):2044-2047
The fabrication of patterned metal–organic framework (MOF) films with precisely controlled nanoscale resolution has been a fundamental challenge in nanoscience and nanotechnology. In this study, nanopatterned MOF films were fabricated using a layer‐by‐layer (LBL) growth method on functional templates (such as a bicontinuous nanoporous membrane or a structure with highly long‐range‐ordered nanoscopic channels parallel to the underlying substrate) generated by the microphase separation of polystyrene‐b ‐poly(2‐vinylpyridine) (PS‐b ‐P2VP) block copolymers. HKUST‐1 can be directly deposited on the templates without any chemical modification because the pyridine groups in P2VP interact with metal ions via metal‐BCP complexes. As a result, nanopatterned HKUST‐1 films with feature sizes below 50 nm and controllable thicknesses can be fabricated by controlling the number of LBL growth cycles. The proposed fabrication method further extends the applications of MOFs in various fields.  相似文献   

7.
Gold nanoparticles by using the mixture of polystyrene-block-poly(2-vinyl pyridine)/poly(2-vinyl pyridine)-block-poly(ethylene oxide) (PS-b-P2VP/P2VP-b-PEO) block copolymers as encapsulating agent was prepared. The prepared nanoparticles were characterized by transmission electron microscopy, UV-Vis spectroscopy and contact angle. It is demonstrated that the obtained gold nanoparticles are covered with mixed block copolymer shells. The hydrophilic property of the nanoparticles can be varied by the change of the dispersion medium. The obtained gold nanoparticles with mixed block copolymer shells are stable in organic solvents (such as tetrahydrofuran and toluene) and water.  相似文献   

8.
In this paper, the authors have systematically studied the microphase separation and crystallization during spin coating of an ABC triblock copolymer, polystyrene-b-poly(2-vinylpyridine)-b-poly(ethylene oxide) (PS-b-P2VP-b-PEO). The microphase separation of PS-b-P2VP-b-PEO and the crystallization of PEO blocks can be modulated by the types of the solvent and the substrate, the spinning speed, and the copolymer concentration. Ordered microphase-separated pattern, where PEO and P2VP blocks adsorbed to the substrate and PS blocks protrusions formed hexagonal dots above the P2VP domains, can only be obtained when PS-b-P2VP-b-PEO is dissolved in N,N-dimethylformamide and the films are spin coated onto the polar substrate, silicon wafers or mica. The mechanism of the formation of regular pattern by microphase separation is found to be mainly related to the inducement of the substrate (middle block P2VP wetting the polar substrate), the quick vanishment of the solvent during the early stage of the spin coating, and the slow evaporation of the remaining solvent during the subsequent stage. On the other hand, the probability of the crystallization of PEO blocks during spin coating decreases with the reduced film thickness. When the film thickness reaches a certain value (3.0 nm), the extensive crystallization of PEO is effectively prohibited and ordered microphase-separated pattern over large areas can be routinely prepared. When the film thickness exceeds another definite value (12.0 nm), the crystallization of PEO dominates the surface morphology. For films with thickness between these two values, microphase separation and crystallization can simultaneously occur.  相似文献   

9.
In situ neutron reflectivity was used to study thermally induced structural changes of the lamellae-forming polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) block copolymer thin films floating on the surface of an ionic liquid (IL). The IL, 1-butyl-3-methylimidazolium trifluoromethanesulfonate, is a nonsolvent for PS and a temperature-tunable solvent for P2VP, and, as such, micellization can be induced at the air-IL interface by changing the temperature. Transmission electron microscopy and scanning force microscopy were used to investigate the resultant morphologies of the micellar films. It was found that highly ordered nanostructures consisting of spherical micelles with a PS core surrounded by a P2VP corona were produced. In addition, bilayer films of PS homopolymer on top of a PS-b-P2VP layer also underwent micellization with increasing temperature but the micellization was strongly dependent on the thickness of the PS and PS-b-P2VP layers.  相似文献   

10.
A simple strategy to tailor the surface of nanoparticles for their specific adsorption to and localization at block copolymer interfaces was explored. Gold nanoparticles coated by a mixture of low molecular weight thiol end-functional polystyrene (PS-SH) (Mn = 1.5 and 3.4 kg/mol) and poly(2-vinylpyridine) homopolymers (P2VP-SH) (Mn = 1.5 and 3.0 kg/mol) were incorporated into a lamellar poly(styrene-b-2-vinylpyridine) diblock copolymer (PS-b-P2VP) (Mn = 196 kg/mol). A library of nanoparticles with varying PS and P2VP surface compositions (FPS) and high polymer ligand areal chain densities was synthesized. The location of the nanoparticles in the PS-b-P2VP block copolymer was determined by transmission electron microscopy. Sharp transitions in particle location from the PS domain to the PS/P2VP interface, and subsequently to the P2VP domain, were observed at FPS = 0.9 and 0.1, respectively. This extremely wide window of FPS values where the polymer-coated gold nanoparticles adsorb to the interface suggests a redistribution of PS and P2VP polymers on the Au surface, inducing the formation of amphiphilic nanoparticles at the PS/P2VP interface. In a second and synthetically more challenging approach, gold nanoparticles were covered with a thiol terminated random copolymer of styrene and 2-vinylpyridine synthesized by RAFT polymerization. Two different random copolymers were considered, where the molecular weight was fixed at 3.5 kg/mol and the relative incorporation of styrene and 2-vinylpyridine repeat units varied (FPS = 0.52 and 0.40). The areal chain density of these random copolymers on Au is unfortunately not high enough to preclude any contact between the P2VP block of the block copolymer and the Au surface. Interestingly, gold nanoparticles coated by the random copolymer with FPS = 0.4 were dispersed in the P2VP domain, while those with FPS = 0.52 were located at the interface. A simple calculation for the adsorption energy to the interface of the nanoparticles with different surface arrangements of PS and P2VP ligands supports evidence for the rearrangement of thiol terminated homopolymers. An upper limit estimate of the adsorption energy of nanoparticles uniformly coated with a random arrangement of PS and P2VP ligands where a 10% surface area was occupied by P2VP -mers or chains was approximately 1 kBT, which indicates that such nanoparticles are unlikely to be segregated along the interface, in contrast to the experimental results for nanoparticles with mixed ligand-coated surfaces.  相似文献   

11.
Hierarchical nanoporous structures are fabricated by adsorption of micelles of diblock copolymer‐templated Au‐nanoparticles onto a hydrophilic solid substrate. Gold nanoparticles are prepared using micelles (19 nm) of polystyrene‐block‐poly(4‐vinylpyridine) (PS‐b‐P4VP) as nanoreactors. Deposition of thin films of the micellar solution, modified with a non‐selective solvent (THF), on hydrophilic surfaces leads to the formation of hierarchical nanoporous morphologies. The thin films exhibit two different pore diameters and a total pore density of 15 × 108 holes per cm2. The structure was analyzed in terms of topography and chemical composition using AFM, TEM and XPS measurements. The PS‐b‐P4VP template was subsequently removed by oxygen plasma etching, to leave behind metallic nanopores that mimic the original thin film morphology.

  相似文献   


12.
Summary: Here, we have described a novel supramolecular complex (SMC) between poly(styrene)-b-poly(4-vinylpyridine) (PS-b-P4VP) and 1-pyrenebutyric acid (PBA) and studied of its self assembly in thin film. PBA will make supramolecular complex with the P4VP block due to strong hydrogen bonding between the carboxylic group of 1-pyrenebutyric acid and pyridine ring of P4VP. The formation of supramolecular complex between PS-P4VP and PBA through hydrogen bonding is investigated through FTIR study. The supramolecular complex of PS-b-P4VP and 1-pyrenebutyric acid changed the block copolymer morphology from cylindrical to lamella in thin film due to the increase of the volume fraction of P4VP (PBA). In both cases (parent block copolymer and SMC), the microdomains are oriented normal to the substrate after annealing in a selective solvent. Pure block copolymer shows cylindrical morphology with a periodicity of ∼26 nm, whereas the SMC shows lamellar morphology with a periodicity of ∼ 29 nm. After fabricating the thin film from SMC, 1-pyrenebutyric acid can be easily removed by dissolving the thin film in ethanol to transform the block copolymer thin film into nanotemplate or membrane.  相似文献   

13.
Polymer complexes were prepared from high molecular weight poly(acrylic acid) (PAA) and poly(styrene)‐block‐poly(4‐vinyl pyridine) (PS‐b‐P4VP) in dimethyl formamide (DMF). The hydrogen bonding interactions, phase behavior, and morphology of the complexes were investigated using Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), dynamic light scattering (DLS), atomic force microscopy (AFM), and transmission electron microscopy (TEM). In this A‐b‐B/C type block copolymer/homopolymer system, P4VP block of the block copolymer has strong intermolecular interaction with PAA which led to the formation of nanostructured micelles at various PAA concentrations. The pure PS‐b‐P4VP block copolymer showed a cylindrical rodlike morphology. Spherical micelles were observed in the complexes and the size of the micelles increased with increasing PAA concentration. The micelles are composed of hydrogen‐bonded PAA/P4VP core and non‐bonded PS corona. Finally, a model was proposed to explain the microphase morphology of complex based on the experimental results obtained. The selective swelling of the PS‐b‐P4VP block copolymer by PAA resulted in the formation of different micelles. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1192–1202, 2009  相似文献   

14.
We report a simple and direct synthetic method for the preparation of nanoporous carbon nanotubes with larger pores (>10 nm) on the tube wall. The method combines the use of anodic aluminum oxide (AAO) as a template for the tube diameter and block copolymer/carbohydrates self-assembly within thin films confined inside AAO pore channels to form nanopores. It involves coating the AAO inner pore channel surface with block copolymer (polystyrene-co-poly(vinylpyridine)) and carbohydrates in dimethylformamide (DMF) solution. Drying of DMF induced microphase separation of PS-PVP and formation of ordered PS and PVP/carbohydrate domains. Within the coating, the carbohydrates stay specifically only in the pyridine domains surrounding PS domains due to the hydrogen bonding between carbohydrates and pyridine blocks. After carbonization at high temperature (>460 degrees C) in argon, PS was removed, forming the nanopores and carbohydrates, and PVP was carbonized, forming the framework of nanoporous carbon tubes within AAO channels. Removal of AAO led to the formation of individual monodisperse nanoporous carbon nanotubes with a tube wall of approximately 16 nm. The ease with which these nanoporous carbon nanotubes can be fabricated, and the ability to tune tube nanostructures and surface chemistry through the choice of block copolymers used and carbonization temperature, should facilitate investigations of their scope for practical applications.  相似文献   

15.
In this paper we report electrochemical investigations of the influence of organic solvents dissolved in aqueous solution on the permeability of nanoporous films derived from a cylinder-forming polystyrene-poly(methyl methacrylate) diblock copolymer (CF-PS-b-PMMA). The nanoporous films (ca. 30 nm in pore diameter) were prepared on planar gold electrodes via UV-based degradation of the cylindrical PMMA domains of annealed CF-PS-b-PMMA films (30-45 nm thick). The permeability of the electrode-supported nanoporous films was assessed using cyclic voltammetry and electrochemical impedance spectroscopy (EIS). The faradic current of Fe(CN)(6)(3-/4-) decreased upon immersion in aqueous solutions saturated with toluene or methylene chloride (5.8 mM and 0.20 M, respectively). EIS data indicated that the decrease in faradic current mainly reflected an increase in the pore resistance (R(pore)). In contrast, R(pore) did not change in a saturated n-heptane solution, 0.17 M ethanol, or 5.8 mM aqueous solutions of methylene chloride, diethyl ether, methyl ethyl ketone, or ethanol. Atomic force microscopy images of a nanoporous film in aqueous solution with and without 5.8 mM toluene showed a reversible change in the surface morphology, which was consistent with a toluene-induced change in R(pore). The solvent-induced increase in R(pore) was attributed to the swelling of the nanoporous films by the organic solvents, which decreased the effective pore diameter. The reversible permeability changes suggest that the surface of CF-PS-b-PMMA-derived nanoporous films can be functionalized in organic environments without destroying the nanoporous structure. In addition, the solvent-induced swelling may provide a simple means for controlling the permeability of such nanoporous films.  相似文献   

16.
《Comptes Rendus Chimie》2014,17(4):310-315
Submicron non-aqueous emulsions, of interest for biomedical and cosmetic formulations, were developed for the system comprising poly(ethylene glycol) (PEG) 400 and Miglyol 812, an enzymatic degradable liquid glycerine ester. These emulsions, with PEG 400 as continuous phase and Miglyol 812 droplets, in the size range of 200 nm, were stabilized by a poly(butadiene)-b-poly(2-vinylpyridine) (PBut-b-P2VP) block copolymer with a composition close to 50/50 wt%. The droplet size, stability and the rheological characteristics were examined as a function of the copolymer concentration. An original aspect of these anhydrous emulsions, with a water miscible continuous phase, is their water dispersibility without additional surfactant. In fact, the initial anhydrous emulsion is sterically stabilized and after water addition at low pH, the protonated P2VP sequence of the copolymer provides the electro-steric stabilization. This oil-in-water emulsion is characterized by sub micron sized Miglyol 812 droplets in an aqueous phase of PEG 400 and water at pH 1.  相似文献   

17.
We report on the growth of gold nanoparticles in polystyrene/poly(2-vinyl pyridine) (PS/P2VP) star-shaped block copolymer monolayers. These amphiphilic PS(n)P2VP(n) heteroarm star copolymers differ in molecular weight (149,000 and 529,000 Da) and the number of arms (9 and 28). Langmuir-Blodgett (LB) deposition was utilized to control the spatial arrangement of P2VP arms and their ability to reduce gold nanoparticles. The PS(n)P2VP(n) monolayer acted as a template for gold nanoparticle growth because of the monolayer's high micellar stability at the liquid-solid interface, uniform domain morphology, and ability to adsorb Au ions from the water subphase. UV-vis spectra and AFM and TEM images confirmed the formation of individual gold nanoparticles with an average size of 6 ± 1 nm in the P2VP-rich outer phase. This facile strategy is critical to the formation of ultrathin polymer-gold nanocomposite layers over large surface areas with confined, one-sided positioning of gold nanoparticles in an outer P2VP phase at polymer-silicon interfaces.  相似文献   

18.
The self-assembly of triblock copolymers of poly(ethylene oxide-b-methyl methacrylate-b-styrene) (PEO-b-PMMA-b-PS), where PS is the major component and PMMA and PEO are minor components, provides a robust route to highly ordered, nanoporous arrays with cylindrical pores of 10-15 nm that show promise in block copolymer lithography. These ABC triblock copolymers were synthesized by controlled living radical polymerization, and after solvent annealing, thin films showing defect-free cylindrical microdomains were obtained. The key to the successful generation of highly regular, porous thin films is the use of PMMA as a photodegradable mid-block which leads to nanoporous structures with an unprecedented degree of lateral order. The power of using a triblock copolymer when compared to a traditional diblock copolymer is evidenced by the ability to exploit and combine the advantages of two separate diblock copolymer systems, the high degree of lateral ordering inherent in PS-b-PEO diblocks plus the facile degradability of PS-b-PMMA diblock copolymer systems, while negating the corresponding disadvantages, poor degradability in PS-b-PEO systems and no long-range order for PS-b-PMMA diblocks.  相似文献   

19.
Surface-tethered oppositely charged weak polyelectrolyte block copolymer brushes composed of poly(2-vinyl pyridine) (P2VP) and poly(acrylic acid) (PAA) were grown from the Si wafer by atom-transfer radical polymerization. The P2VP-b-PAA brushes were prepared through hydrolysis of the second PtBA block to the corresponding acrylic acid. The P2VP-b-PAA brushes with different PAA block length were obtained. The P2VP-b-PAA brushes revealed a unique reversible wetting behavior with pH. The difference between the solubility parameters for P2VP and PAA, the changes of surface chemical composition and surface roughness, and the reversible wetting behavior illustrated that the surface rearrangement occurred during treatment of the P2VP-b-PAA brushes by aqueous solution with different pH value. The reversible properties of the P2VP-b-PAA brushes can be used to regulate the adsorption of the sulfonated PS nanoparticles.  相似文献   

20.
A strain‐induced microphase morphology has been established by the melt drawing process in a high molecular weight asymmetric polystyrene‐block‐poly(vinyl‐2‐pyridine) (PS‐b‐P2VP) diblock copolymer. For the first time to the best knowledge of the authors, the melt drawing process has been applied to block copolymers to produce free‐standing, ultrathin block copolymer films with a thickness of ≈100 nm. Intriguingly, during the melt drawing of the polymer a global strain‐induced unidirectional order of the microphase separated needle‐like domains of the block copolymer was generated. This morphology consists of a PS matrix with embedded highly oriented P2VP needle‐like domains oriented parallel to the drawing direction. The needle‐like morphology is explained by a simplified extended chain model of the diblock copolymer chains. Annealing of the films leads to a transition from the strain‐induced needle‐like morphology toward the quasi‐equilibrium sphere‐like morphology.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号