首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Recent laboratory studies and analyses (Lai et al. Presented at the 2009 Rocky Mountain Petroleum Technology Conference, 14–16 April, Denver, CO, 2009) have shown that the Barree and Conway model is able to describe the entire range of relationships between flow rate and potential gradient from low- to high-flow rates through porous media. A Buckley and Leverett type analytical solution is derived for non-Darcy displacement of immiscible fluids in porous media, in which non-Darcy flow is described using the Barree and Conway model. The comparison between Forchheimer and Barree and Conway non-Darcy models is discussed. We also present a general mathematical and numerical model for incorporating the Barree and Conway model in a general reservoir simulator to simulate multiphase non-Darcy flow in porous media. As an application example, we use the analytical solution to verify the numerical solution for and to obtain some insight into one-dimensional non-Darcy displacement of two immiscible fluids with the Barree and Conway model. The results show how non-Darcy displacement is controlled not only by relative permeability, but also by non-Darcy coefficients, characteristic length, and injection rates. Overall, this study provides an analysis approach for modeling multiphase non-Darcy flow in reservoirs according to the Barree and Conway model.  相似文献   

2.
The pore and pore-throat sizes of shale and tight rock formations are on the order of tens of nanometers. The fluid flow in such small pores is significantly affected by walls of pores and pore-throats. This boundary layer effect on fluid flow in tight rocks has been investigated through laboratory work on capillary tubes. It is observed that low permeability is associated with large boundary layer effect on fluid flow. The experimental results from a single capillary tube are extended to a bundle of tubes and finally to porous media of tight formations. A physics-based, non-Darcy low-velocity flow equation is derived to account for the boundary layer effect of tight reservoirs by adding a non-Darcy coefficient term. This non-Darcy equation describes the fluid flow more accurately for tight oil reservoir with low production rate and low pressure gradient. Both analytical and numerical solutions are obtained for the new non-Darcy flow model. First, a Buckley–Leverett-type analytical solution is derived with this non-Darcy flow equation. Then, a numerical model has been developed for implementing this non-Darcy flow model for accurate simulation of multidimensional porous and fractured tight oil reservoirs. Finally, the numerical studies on an actual field example in China demonstrate the non-negligible effect of boundary layer on fluid flow in tight formations.  相似文献   

3.
低渗油层压裂水平井两相流研究   总被引:1,自引:0,他引:1  
依据压裂水平井不同流动区域的流动规律, 将压裂水平井的渗流分为裂缝中的高速非达西流 动区、裂缝控制影响的椭圆渗流区、远离裂缝的基质非达西渗流区, 考虑启动压力梯度的影 响, 对压裂水平井两相渗流进行了分析, 得到了低渗透油层压裂水平井的产量公式. 研究结 果表明, 裂缝的导流能力越大, 压裂水平井的产量越高. 但随着开采时间的增加, 其产量递减幅度越 大; 压裂裂缝长度越小, 压裂水平井的初始产量越高. 但随着生产时间的推移, 压裂裂缝的 长度越大, 产量的递减幅度越小; 中间裂缝长, 两翼裂缝短的情况下, 压裂水平井的产量最 高.  相似文献   

4.
低渗透多孔介质渗流动边界模型的解析与数值解   总被引:1,自引:0,他引:1  
考虑启动压力梯度的低渗透多孔介质非达西渗流模型属于强非线性动边界问题, 分别利用相似变量变换方法和基于空间坐标变换的有限差分方法, 对内边界变压力情况下、考虑启动压力梯度的一维低渗透多孔介质非达西渗流动边界模型进行了精确解析与数值求解研究. 研究结果表明:该动边界模型存在唯一的精确解析解, 且所求得的精确解析解可严格验证数值解的正确性;且当启动压力梯度值趋于零时, 非达西渗流动边界模型的精确解析解将退化为达西渗流情况下的精确解析解. 由求解结果作出的非零无因次启动压力梯度下的地层压力分布曲线表现出紧支性特点, 其与达西渗流模型的有显著不同. 因此, 研究低渗透多孔介质中非稳态渗流问题时, 应该考虑动边界的影响. 研究内容完善了低渗透多孔介质的非达西渗流力学理论, 为低渗透油气藏开发的试井解释与油藏数值模拟技术提供了理论基础.   相似文献   

5.
The features of the hydrodynamic processes in stratified inhomogeneous oil reservoirs are investigated using a numerical solution of the equations of two-phase multicomponent flow through a porous medium. The structures of the two-phase flows caused by the reservoir structure and the hydrodynamic interaction between the phases are analyzed in relation to problems of the displacement of oil by water in ordinary flooding and in the presence of moving thickener slugs.  相似文献   

6.
多尺度嵌入式离散裂缝模型模拟方法   总被引:1,自引:0,他引:1  
天然裂缝性油藏和人工压裂油藏内裂缝形态多样,分布复杂,传统的离散裂缝模型将裂缝作为基岩网格的边界,采用非结构化网格进行网格划分,其划分过程复杂,计算量大。嵌入式离散裂缝模型划分网格时不需要考虑油藏内的裂缝形态,只需对基岩系统进行简单的网格剖分,可以大大降低网格划分的复杂度,从而提高计算效率。然而,在油藏级别的数值模拟和人工压裂裂缝下的产能分析中,仍然存在计算量巨大、模拟时间过长的问题。本文提出嵌入式离散裂缝模型的多尺度数值计算格式,使用多尺度模拟有限差分法研究嵌入式离散裂缝模型渗流问题。通过在粗网格上求解局部流动问题计算多尺度基函数,多尺度基函数可以捕捉裂缝与基岩间的相互关系,反映单元内的非均质性,因此该方法既有传统尺度升级法的计算效率,又可以保证计算精度,数值结果表明这是一种有效的裂缝性油藏数值模拟方法。  相似文献   

7.
This paper considers the problem of non-Newtonian oil displa-cement by water in porous media.adopting the linear permea-tion law with initial pressure gradient.For one-dimensionalflow,the basic equation of non-Newtonian oil displacement bywater in sandstone reservoirs and fractured reservoirs is de-rived and numerical solutions are obtained.The results arecompared with the corresponding ones for Newtonian oil dis-placement to show the essential characteristics of non-Newto-nian oil displacement by water.  相似文献   

8.
裂缝性低渗透油藏流-固耦合理论与数值模拟   总被引:5,自引:0,他引:5  
根据裂缝性低渗油藏的储层特征,建立适合裂缝性砂岩油藏渗流的等效连续介质模型。将渗流力学与弹塑性力学相结合,建立裂缝性低渗透油藏的流-固耦合渗流数学模型,并给出其数值解.通过数值模拟对一实际井网开发过程中孔隙度、渗透率的变化以及开发指标进行计算,并和刚性模型以及双重介质模型的计算结果进行了分析比较.  相似文献   

9.
This paper seeks for the line source and cylindrical plane source solutions of unsteady axisymmetrical two-dimensional flow through infinite and finite reservoirs with triple porosity. They not only reveal the essential characteristics of fractured reservoirs but also generalize and develop the existing primal results of homogeneous and porous media. Ref. [1] gives the line source solution of unsteady axisymmetrical two-dimensional flow in infinite reservoir with double porosity; in this paper we study the problem of flow through triple porous media.  相似文献   

10.
动边界双重介质油藏低速非达西渗流试井模型   总被引:3,自引:2,他引:1  
裂缝性油藏中基质岩块的渗透率一般很低,大量岩心测试实验证实在基质岩块内的液体渗流和在一定含水饱和度下的气体渗流将偏离达西渗流,往往出现低速非达西渗流,表现出启动压力梯度以及流体流动边界不断向外扩展等特殊现象。本文充分考虑启动压力梯度与动边界的影响,建立了微可压缩双重介质油藏低速非达西渗流的试井数学模型,对时间和空间变量...  相似文献   

11.
This paper examines the two-phase flow for a horizontal well penetrating a naturally fractured reservoir with edge water injection by means of a fixed streamline model. The mathematical model of the vertical two-dimensional flow or oil-water for a horizontal well in a medium with double-porosity is established, and whose accurate solutions are obtained by using the characteristic method. The saturation distributions in the fractured system and the matrix system as well as the formula of the time of water free production are presented. All these results provide a theoretical basis and a computing method for oil displacement by edge water from naturally fractured reservoirs.  相似文献   

12.
Acidizing technology has been widely applied when developing naturally fractured–vuggy reservoirs. So testing and evaluating acidizing wells’ pressure behavior become necessary for further improving the wells’ performance. Analyzing transient pressure data can estimate some key reservoir parameters. Generally speaking, carbonate minerals are usually composed of dolomite and calcite which are easy to be dissolved by hydrochloric acid which is often used to react with the rock to create a high conductivity channel, namely wormhole. Pressure transient behavior in fractured–vuggy reservoirs has been studied for many years; however, the models of acidizing wells with wormholes were not reported in previous studies. This article presented an analytical model for wormholes in naturally fractured–vuggy carbonate reservoirs, and wormholes solutions were obtained through point sink integral method. The results were validated accurately by comparing with previous results and numerical simulation. Then in this paper, type curves were established to recognize the flow characteristics, and flow was divided into six flow regimes comprehensively. The calculative results showed that the characteristics of type curves were influenced by inter-porosity flow factor, wormhole number, fluids capacitance coefficient. We also showed that the pressure behavior was affected by the angles between wormholes, and the pressure depletion increased as the angle decreased, because the wormholes were closer, their interaction became stronger. At the end, a reservoir example was showed to demonstrate the methodology of new type curve analysis.  相似文献   

13.
A numerical scheme based on the eXtended Finite Element Method (XFEM) is proposed to simulate complex fluid flow in a fractured porous reservoir. By enriching the elements fully cut by the fracture and the near‐tip region, the flow mechanism including the tip flux singularity can be exactly represented in the XFEM formulation. Fluid transfer between the matrix and the fractures can be easily coupled, and XFEM also overcomes the sensitivity to the mesh used in the traditional unstructured discretizations, regardless of the complexity of the fracture network. The method is validated for a simple case by the exact analytical solution. Results are compared between XFEM and FEM. Case studies are presented to illustrate the power, efficiency, accuracy, and flexibility of the proposed method for simulating transient productive flow in reservoirs with complex fracture networks.  相似文献   

14.
弹塑性变形油藏中多相渗流的数值模拟   总被引:17,自引:0,他引:17  
基于流固耦合力学理论,建立了弹性变形油藏中多相渗流的数学模型,该模型考虑了渗流与变形的耦合作用,以及注采交变载荷作下油藏多孔介质的弹性变形特征,给出了耦合数值模拟方法和算例。  相似文献   

15.
A stochastic model for flow through inhomogeneous fractured reservoirs of double porosity, based on Barenblattet al.'s continuum approach, is presented. The fractured formation is conceptualized as an interconnected fracture network surrounding porous blocks, and amenable to the continuum approach. The block permeability is negligible in comparison to that of the fractures, and therefore the reservoir permeability is represented by the permeability of the fracture network. The fractured reservoir inhomogeneity is attributed to the fracture network, while the blocks are considered homogeneous. The mathematical model is represented by a coupled system of partial differential random equations, and a general solution for the average and for the correlation moments of the fracture pressure are obtained by the Neumann expansion (or Adomian decomposition). The solution for pressure is represented by an infinite series and an approximate solution for radial flow, is obtained by retaining the first two terms of the series. The purpose of this investigation is to get an insight on the pressure behavior in inhomogeneous fractured reservoirs and not to obtain type curves for determination of reservoir properties, which owing to the nonuniqueness of the solution, is impossible. For the present analysis we assumed an ideal reservoir with cylindrical symmetric inhomogeneity around the well. Fractured rock reservoirs being practically inhomogeneous, it is of interest to compare the pressure behavior of such reservoirs, with Warren and Roots's solution for (ideal) homogeneous reservoirs, used as a routine for determining the fractured reservoir characteristic parameters and, using the results of well tests. The comparison of the results show that inhomogeneous and homogeneous reservoirs exhibit a similar pressure behavior. While the behavior is identical, the same drawdown or a build-up pressure curve may be fitted by different characteristic dimensionless parameters and, when attributed to an inhomogeneous or a homogeneous reservoir. It is concluded that the ambiguity in determining the fractured reservoir and, makes questionable the usefulness of determination of these parameters. Computations were also carried out to determine the correlation between the fracture pressure at the well and the fracture pressure at different points.  相似文献   

16.
With a previously developed numerical model, we perform a detailed study of the heat extraction process in enhanced or engineered geothermal system (EGS). This model takes the EGS subsurface heat reservoir as an equivalent porous medium while it considers local thermal non-equilibrium between the rock matrix and the fluid flowing in the fractured rock mass. The application of local thermal non-equilibrium model highlights the temperature-difference heat exchange process occurring in EGS reservoirs, enabling a better understanding of the involved heat extraction process. The simulation results unravel the mechanism of preferential flow or short-circuit flow forming in homogeneously fractured reservoirs of different permeability values. EGS performance, e.g. production temperature and lifetime, is found to be tightly related to the flow pattern in the reservoir. Thermal compensation from rocks surrounding the reservoir contributes little heat to the heat transmission fluid if the operation time of an EGS is shorter than 15 years. We find as well the local thermal equilibrium model generally overestimates EGS performance and for an EGS with better heat exchange conditions in the heat reservoir, the heat extraction process acts more like the local thermal equilibrium process.  相似文献   

17.
Most of the developed models for fractured reservoirs assume ideal matrix block size distribution. This assumption may not be valid in reality for naturally fractured reservoirs and possibly lead to errors in prediction of production from the naturally fractured reservoirs especially during a transient period or early time production from the matrix blocks. In this study, we investigate the effect of variable block size distribution on one- dimensional flow of compressible fluids in fractured reservoirs. The effect of different matrix block size distributions on the single phase matrix-fracture transfer is studied using a recently developed semi-analytical approach. The proposed model is able to simulate fluid exchange between matrix and fracture for continuous or discrete block size distributions using probability density functions or structural information of a fractured formation. The presented semi-analytical model demonstrates a good accuracy compared to the numerical results. There have been recent attempts to consider the effect of variable block size distribution in naturally fractured reservoir modeling for slightly compressible fluids with a constant viscosity and compressibility. The main objective of this study is to consider the effect of variable block size distribution on a one-dimensional matrix-fracture transfer function for single-phase flow of a compressible fluid in fractured porous media. In the proposed semi-analytical model, the pressure variability of viscosity and isothermal compressibility is considered by solving the nonlinear partial differential equation of compressible fluid flow in the fractured media. The closed form solution provided can be applied to flow of compressible fluids with variable matrix block size distribution in naturally fractured gas reservoirs.  相似文献   

18.
Porous–vuggy carbonate reservoirs consist of both matrix and vug systems. This paper represents the first study of flow issues within a porous–vuggy carbonate reservoir that does not introduce a fracture system. The physical properties of matrix and vug systems are quite different in that vugs are dispersed throughout a reservoir. Assuming spherical vugs, symmetrically distributed pressure, centrifugal flow of fluids and considering media that is directly connected with wellbore as the matrix system, we established and solved a model of well testing and rate decline analysis for porous–vuggy carbonate reservoirs, which consists of a dual porosity flow behavior. Standard log–log type curves are drawn up by numerical simulation and the characteristics of type curves are analyzed thoroughly. Numerical simulations showed that concave type curves are dominated by interporosity flow factor, external boundary conditions, and are the typical response of porous–vuggy carbonate reservoirs. Field data interpretation from Tahe oilfield of China were successfully made and some useful reservoir parameters (e.g., permeability and interporosity flow factor) are obtained from well test interpretation.  相似文献   

19.
Microvisual Study of Multiphase Gas Condensate Flow in Porous Media   总被引:4,自引:0,他引:4  
Gas condensate reservoirs constitute a significant portion of hydrocarbon reserves worldwide. The liquid drop-out in these reservoirs may lead to recovery problems such as near wellbore permeability impairment and uncertainty in the actual location of the target condensate. Such technical issues can be addressed through improved understanding of the formation of condensate and the multiphase flow of gas/condensate/water in the reservoir as characterized by relative permeability curves. The appropriate relative permeability curves in turn can be used in reservoir simulators to assist in optimization of field development. This paper reports results of experiments conducted in micromodels, in support of possible core flow tests, using reservoir fluids under reservoir conditions. In particular, visualizations of condensate formation with and without connate water are presented and the differences between the two cases as well as the possible implications for the relative permeability measurements are discussed. Furthermore, the flow of gas and condensate at different force ratios (capillary and Bond numbers) are presented. It is postulated that a single dimensionless number may not be sufficient to characterize the multiphase flow in gas condensate reservoirs. The physical mechanisms occurring under various field conditions are examined in the light of these observations.  相似文献   

20.
页岩气藏压裂水平井试井分析   总被引:5,自引:2,他引:3  
朱光普  姚军  樊冬艳  曾慧 《力学学报》2015,47(6):945-954
页岩气藏资源丰富,开发潜力巨大,已成为目前研究的热点.与常规气藏相比,页岩气藏运移机制复杂,流动模式呈非线性,有必要考虑页岩气的吸附解吸,天然微裂缝的应力敏感性,人工裂缝内的非达西流等非线性因素对压裂水平井压力响应的影响. 基于双重介质和离散裂缝混合模型,分别采用Langmuir等温吸附方程描述吸附解吸,渗透率指数模型描述应力敏感,Forchheimer方程描述非达西效应,建立页岩气藏压裂水平井数值试井模型. 运用伽辽金有限元法对模型进行求解.根据试井特征曲线,划分流动阶段,着重分析非线性因素对压力响应的影响.结果表明:页岩气藏压裂水平井存在压裂裂缝线性流、压裂裂缝径向流、地层线性流、系统径向流及封闭边界影响5 种流动阶段.吸附解吸的影响发生窜流之后,Langmuir吸附体积增大,拟压力导数曲线凹槽更加明显,系统径向流出现时间与压力波传播到边界时间均延迟;天然裂缝系统的应力敏感性主要影响试井曲线的晚期段,拟压力和拟压力导数曲线均表现为上翘,应力敏感效应越强,上翘幅度越大;高速非达西效应对早期段影响较大,非达西效应越强,拟压力降幅度越大,试井曲线上翘.与解析解的对比以及矿场实例验证了模型的正确性与适用性.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号