首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 231 毫秒
1.
This research presents an analytical study of the interaction problem of an edge dislocation with a circular inclusion with a circumferentially inhomogeneously imperfect interface. The interface, which is modeled as a spring (interphase) layer with vanishing thickness, is characterized by that in which there is a displacement jump across the interface in the same direction as the corresponding tractions, and the same degree of imperfection is realized in both the normal and tangential directions. Furthermore, the interface parameter is nonuniform along the interface. In order to arrive at an elementary form solution, we introduce a conformal mapping function. Then the stress field as well as the Peach–Koehler force acting on the edge dislocation can be obtained from the derived complex potentials. Calculations demonstrate that the nonuniform interface parameter has a significant influence on the stress field.  相似文献   

2.
The interaction of a general plane P wave and an elastic cylindrical inclusion of infinite length partially debonded from its surrounding viscoelastic matrix of infinite extension is investigated. The debonded region is modeled as an arc-shaped interface crack between inclusion and matrix with non-contacting faces. With wave functions expansion and singular integral equation technique, the interaction problem is reduced to a set of simultaneous singular integral equations of crack dislocation density function. By analysis of the fundamental solution of the singular integral equation, it is found that dynamic stress field at the crack tip is oscillatory singular, which is related to the frequency of incident wave. The singular integral equations are solved numerically, and the crack open displacement and dynamic stress intensity factor are evaluated for various incident angles and frequencies. The project supported by the National Natural Science Foundation of China (19872002) and Climbing Foundation of Northern Jiaotong University  相似文献   

3.
The plane elastic problem of a circular inhomogeneity with an imperfect interface of spring-constant-type is reduced to the solution of a Somigliana dislocation problem, when the solution for the corresponding problem with a perfect interface is known. The Burger's vector of the Somigliana dislocation is determined so that its components satisfy two interfacial conditions involving the traction components of the corresponding problem with a perfect interface. Employing complex variables, a two-phase potential solution to the Somigliana dislocation inhomogeneity problem is developed for a general form of the Burger's vector. Detailed results are reported for a uniform eigenstrain in the inhomogeneity, and for a remote uniform heat flow in the matrix. In the latter case, the inhomogeneity behaves as a void, when it begins to slide.  相似文献   

4.
The interaction of a generalized screw dislocation with circular arc interfacial cracks under remote antiplane shear stresses, in-plane electric and magnetic loads in transversely isotropic magnetoelectroelastic solids is dealt with. By using the complex variable method, the general solutions to the problem are presented. The closed-form expressions of complex potentials in both the inhomogeneity and the matrix are derived for a single circular-arc interfacial crack. The intensity factors of stress, electric displacement and magnetic induction are provided explicitly. The image forces acting on the dislocation are also calculated by using the generalized Peach–Koehler formula. For the case of piezoelectric matrix and piezomagnetic inclusion, the shielding and anti-shielding effect of the dislocation upon the stress intensity factors is evaluated in detail. The results indicate that if the distance between the dislocation and the crack tip remains constant, the dislocation in the interface will have a largest shielding effect which retards the crack propagation. In addition, the influence of the interfacial crack geometry and materials magnetoelectroelastic mismatch upon the image force is discussed. Numerical computations show that the perturbation effect of the above parameters upon the image force is significant. The main result shows that a stable or unstable equilibrium point may be found when a screw dislocation approaches the surface of the crack from infinity which differs from the perfect bonded case under the same conditions. The present solutions contain a number of previously known results which can be shown to be special cases.  相似文献   

5.
This study deals with the elastostatic problem of a penny-shaped crack in an elastic matrix which is reinforced by filaments or fibers perpendicular to the plane of the crack. An elastic filament model is developed in the first paper. The second paper considers the application of the model to the penny-shaped crack problem in which the filaments of finite length are symmetrically distributed around the crack. The reinforcement problem for the cracked matrix with elastic fibers of different diameter, modulus, and relative location is considered in the third paper. Since the primary interest is in the application of the results to studies relating to the fracture of fiber or filament-reinforced composites and reinforced concrete, the main emphasis of the study will be on the evaluation of the stress intensity factor along the periphery of the crack, the stresses in the filaments or fibers, and the interface shear between the matrix and the filaments or fibers.  相似文献   

6.
We investigate a semi-infinite crack penetrating a piezoelectric circular inhomogeneity bonded to an infinite piezoelectric matrix through a linear viscous interface. The tip of the crack is at the center of the circular inhomogeneity. By means of the complex variable and conformal mapping methods, exact closed-form solutions in terms of elementary functions are derived for the following three loading cases: (i) nominal Mode-III stress and electric displacement intensity factors at infinity; (ii) a piezoelectric screw dislocation located in the unbounded matrix; and (iii) a piezoelectric screw dislocation located in the inhomogeneity. The time-dependent electroelastic field in the cracked composite system is obtained. Particularly the time-dependent stress and electric displacement intensity factors at the crack tip, jumps in the displacement and electric potential across the crack surfaces, displacement jump across the viscous interface, and image force acting on the piezoelectric screw dislocation are all derived. It is found that the value of the relaxation (or characteristic) time for this cracked composite system is just twice as that for the same fibrous composite system without crack. Finally, we extend the methods to the more general scenario where a semi-infinite wedge crack is within the inhomogeneity/matrix composite system with a viscous interface.  相似文献   

7.
In the following analysis, we present a rigorous solution for the problem of a circular elastic inclusion surrounded by an infinite elastic matrix in finite plane elastostatics. The inclusion and matrix are separated by a circumferentially inhomogeneous imperfect interface characterized by the linear spring-type imperfect interface model where the interface is such that the same degree of imperfection is realized in both the normal and tangential directions. Through the use of analytic continuation, a set of first-order coupled ordinary differential equations with variable coefficients are developed for two analytic potential functions. The unknown coefficients of the potential functions are determined from their analyticity requirements and some additional problem-specific constraints. An example is then presented for a specific class of interface where the inclusion mean stress is contrasted between the homogeneous interface and inhomogeneous interface models. It is shown that, for circumstances where a homogeneously imperfect interface may not be warranted, the inhomogeneous model has a pronounced effect on the mean stress within the inclusion.  相似文献   

8.
The fracture behavior of a cracked strip under antiplane mechanical and inplane electrical loading is studied. A functionally graded piezoelectric strip with exponential material gradation is under consideration. The mechanical and electrical loading is combined via loading coupling factor. The problem of a graded piezoelectric strip containing a screw dislocation is solved. This solution results in stress and electric displacement components with Cauchy singularity. Based on the solution achieved for the dislocation, the distributed dislocation technique (DDT) is utilized to form any geometry of multiple cracks and analyze the behavior of a cracked strip under antiplane mechanical and inplane electrical loading. This technique is capable of the analysis of a strip with a system of interacting cracks. Several examples including strips with single crack, two straight cracks and two curved cracks are presented.  相似文献   

9.
An analytical solution is derived for the problem of a nonuniformly coated circular inclusion in an unbounded matrix under anti-plane deformations. The inclusion/interphase/matrix system is subject to (1) remote uniform shear and uniform eigenstrain imposed on the circular inclusion, and (2) a screw dislocation or a point force in the matrix. It is found that the varying interphase thickness will exert a significant influence on the nonuniform stress field within the circular inclusion, and on the direction and magnitude of the image force acting on a screw dislocation. In the course of development, it is found that the presence of certain coated inclusions, which are termed stealth, will not cause change of elastic energy in the body. The derived analytical solution for a screw dislocation is then employed as Green’s function to investigate a radial matrix crack interacting with the nonuniformly coated inclusion. The numerical results show that the varying interphase thickness will also affect the stress intensity factors.  相似文献   

10.
吴永礼 《力学学报》2000,32(6):727-738
对非理想界面的三相复合材料,提出了计算弹性应力场的微观力学模型,在适当的简化假设下,对带界相的颗粒增强和纤维增强复合材料,得到了应力场的计算公式。以剪切载荷为例给出了数值例子。给出的数值结果表明非理想界面对三相复合材料应力场的影响。  相似文献   

11.
A piezoelectric screw dislocation in the matrix interacting with a circular inhomogeneity with interfacial cracks under antiplane shear and in-plane electric loading at infinity was dealt with. Using complex variable method, a general solution to the problem was presented. For a typical case, the closed form expressions of complex potentials in the inhomogeneity and the matrix regions and derived explicitly when the interface containsthe electroelastic field intensity factors weresingle crack. The image force acting on the piezoelectric screw dislocation was calculated by using the perturbation technique and the generalized Peach-Koehler formula. As a result, numerical analysis and discussion show that the perturbation influence of the interfacial crack on the interaction effects of the dislocation and the inhomogeneity is significant which indicates the presence of the interfacial crack will change the interaction mechanism when the length of the crack goes up to a critical value. It is also shown that soft inhomogeneity can repel the dislocation due to their intrinsic electromechanical coupling behavior.  相似文献   

12.
IntroductionPiezoelectric materials have potentials for use in many modern devices and compositestructures. The presence of various defects, such as inclusions, holes, dislocations andcracks, can greatly influence their characteristics and coupled behavio…  相似文献   

13.
Using the slender inclusion model developed earlier the elastostatic interaction problem between a penny-shaped crack and elastic fibers in an elastic matrix is formulated. For a single set and for multiple sets of fibers oriented perpendicularly to the plane of the crack and distributed symmetrically on concentric circles the problem is reduced to a system of singular integral equations. Techniques for the regularization and for the numerical solution of the system are outlined. For various fiber geometries numerical examples are given and distribution of the stress intensity factor along the crack border is obtained. Sample results showing the distribution of the fiber stress and a measure of the fiber-matrix interface shear are also included.  相似文献   

14.
导电薄板内电流密度分布与反平面剪切的比拟   总被引:1,自引:0,他引:1  
定量分析电流密度在含裂纹载流薄板内的分布是当前利用电流热效应止裂技术中一个首先要解决的问题.由于裂纹的存在,电流密度在裂尖形成带奇异性分布的高度密集.现有的分析方法往往比较复杂或局限于特殊布置形式的裂纹.通过电流密度分布与弹性力学里反平面剪切问题的比拟,把分析含裂纹载流薄板内电流密度的分布等效于考虑相应的III型裂纹问题,并比照III型裂纹的应力强度因子来定义电流密度因子.而对于裂纹问题的处理可采用分布位错法这一断裂力学里便利有效的分析手段.由给出的算例可见,所提出的比拟解法可以方便精确地求解电流密度在裂尖附近的奇异分布,并有助于对这一奇异性在概念上的直观理解.  相似文献   

15.
Investigated is a crack problem for an array of collinear microcracks in composite matrix. Inclusions are situated in between the neighbouring microcracks tips and exhibit different elastic properties than matrix. The problem is solved using the technique of distributed dislocations. A developed approximate fundamental solution for a single dislocation lying in a general point between inclusions is employed in the distribution of continuously distributed dislocation to cracks modelling. Stress intensity factor is calculated for various cracks/inclusions geometries and elastic moduli mismatches. Stability and/or instability of the straight microcrack paths is investigated for slowly growing microcracks with inclusions located in between the neighbouring microcracks tips. Applications to periodic microcrack tunnelling and microcracks weakening ahead of the main crack are discussed.  相似文献   

16.
The electro-elastic interaction between a piezoelectric screw dislocation located either outside or inside inhomogeneity and circular interfacial rigid lines under anti-plane mechanical and in-plane electrical loads in linear piezoelectric materials is dealt with in the framework of linear elastic theory. Using Riemann–Schwarz’s symmetry principle integrated with the analysis of singularity of complex functions, the general solution of this problem is presented in this paper. For a special example, the closed form solutions for electro-elastic fields in matrix and inhomogeneity regions are derived explicitly when interface containing single rigid line. Applying perturbation technique, perturbation stress and electric displacement fields are obtained. The image force acting on piezoelectric screw dislocation is calculated by using the generalized Peach–Koehler formula. As a result, numerical analysis and discussion show that soft inhomogeneity can repel screw dislocation in piezoelectric material due to their intrinsic electro-mechanical coupling behavior and the influence of interfacial rigid line upon the image force is profound. When the radian of circular rigid line reaches extensive magnitude, the presence of interfacial rigid line can change the interaction mechanism.  相似文献   

17.
This paper attempts to investigate the problem for the interaction between a uniformly subsonic moving screw dislocation and interface cracks in two dissimilar anisotropic materials. Using Riemann–Schwarz’s symmetry principle integrated with the analysis singularity of complex functions, we present the general elastic solutions of this problem and the closed form solutions for interface containing one and two cracks. The expressions of stress intensity factors at the crack tips and image force acting on moving dislocation are derived explicitly. The results show that the stress intensity factors at the crack tips decrease with increasing velocity of dislocation, and larger dislocation velocity leads to the equilibrium position of dislocation leaving from crack tips. The presented solutions contain previously known results as the special cases.  相似文献   

18.
The problem of a mode-II crack close to and perpendicular to an imperfect interface of two bonded dissimilar materials is investigated.The imperfect interface is modelled by a linear spring with the vanishing thickness.The Fourier transform is used to solve the boundary-value problem and to derive a singular integral equation with the Cauchy kernel.The stress intensity factors near the left and right crack tips are evaluated by numerically solving the resulting equation.Several special cases of the mode-II crack problem with an imperfect interface are studied in detail.The effects of the interfacial imperfection on the stress intensity factors for a bimaterial system of aluminum and steel are shown graphically.The obtained observation reveals that the stress intensity factors are dependent on the interface parameters and vary between those with a fully debonded interface and those with a perfect interface.  相似文献   

19.
The problem of an elliptic inclusion embedded in an infinite matrix subjected to a uniform magnetic induction is considered in this paper. Basing upon the two-dimensional magnetoelastic formulation, the technique of conformal mapping, and the method of analytical continuation, a general solution of magnetic field quantities and the magnetoelastic stresses are obtained for both the matrix and the inclusion. Comparison is made with several special cases of which the analytical solutions can be found in the literature, which shows that the solutions presented here are general and exact. Moreover, the magnetoelastic stresses at the interface between the inclusion and the matrix are presented with figures.  相似文献   

20.
Dislocation mobility and stability in nanocrystals and electronic materials are influenced by the material composition and interface conditions. Its mobility and stability then affect the mechanical behaviors of the composites. In this paper, we first address, in detail, the problem of a screw dislocation located in an annular coating layer which is imperfectly bonded to the inner circular inhomogeneity and to the outer unbounded matrix. Both the inhomogeneity-coating interface and coating-matrix interface are modeled by a linear spring with vanishing thickness to account for the possible damage occurring on the interface. An analytic solution in series form is derived by means of complex variable method, with all the unknown constants being determined explicitly. The solution is then applied to the study of the dislocation mobility and stability due to its interaction with the two imperfect interfaces. The most interesting finding is that when the middle coating layer is more compliant than both the inner inhomogeneity and the outer unbounded matrix and when the interface rigidity parameters for the two imperfect interfaces are greater than certain values, one stable and two unstable equilibrium positions can exist for the dislocation. Furthermore, under certain conditions an equilibrium position, which can be either stable or unstable (i.e., a saddle point), can exist, which has never been observed in previous studies. Results for a screw dislocation interacting with two parallel straight imperfect interfaces are also presented as the limiting case where the radius of the inner inhomogeneity approaches infinity while the thickness of the coating layer is fixed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号