首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
低温燃烧法制备纳米Ce1-xNdxO2-x/2(0≤x≤0.6) 粉体的研究   总被引:2,自引:0,他引:2  
采用低温燃烧合成工艺,在甘氨酸-硝酸盐体系下制备出纳米Ce1-xNdxO2-x/2(0≤x≤0.6)系列粉体(NDC)。X射线衍射(XRD)结果表明。Nd^3 取代Ce^4 进入晶格内部,形成具有单相立方萤石型结构的固溶体,其晶格常数随Nd^3 掺杂浓度的增大而线性增加,晶粒尺寸在17~28nm之间。透射电镜(TEM)结果表明,粉体尺寸在30-40nm之间,具有较高的烧结活性。拉曼光谱(Rman spectrum)表明%宽化峰与掺杂后固溶体中产生的氧空位有关。  相似文献   

2.
采用以尿素为燃料的燃烧合成法制备Ce0.8Sm0.2O1.9(SDC)氧离子导体材料, 对燃烧合成粉体的物相和显微形态进行了表征, 并研究了燃烧法合成SDC的烧结性能以及烧结体的导电性能. 研究结果表明, 采用尿素燃烧法合成SDC具有简便高效和合成粉体烧结活性高的优点. 经过燃烧过程后即可得到立方萤石结构的纯相SDC粉体, 合成粉体的分散性良好, 为50~150 nm的球形颗粒, 具有高的烧结活性, 在1250 ℃的烧结温度下, 陶瓷样品的相对密度可达到95.1%. 在600和800 ℃的测试温度下, 烧结温度为1250 ℃的陶瓷样品的电导率分别达到5.4×10-2和1.0×10-1 Ω-1·cm-1.  相似文献   

3.
采用硝酸盐-甘氨酸溶液燃烧法合成了La0.6Sr0.4Co0.2Fe0.8O3-?啄(LSCF)前驱粉体, 通过XRD、BET、FESEM及激光粒度仪等手段对粉体进行表征. 结果表明, 所合成的LSCF粉体为纯钙钛矿结构, 具有高达22.9 m2·g-1的比表面积, 粒度均匀, 平均颗粒尺寸为175 nm. 非等温烧结实验表明该粉体具有良好的低温烧结活性. 在阳极NiO-YSZ(氧化钇稳定氧化锆)负载的电解质YSZ上, 于800 ℃烧结制备LSCF阴极组成的单元电池Ni-YSZ/YSZ/LSCF, 在700 ℃下以H2作燃料时具有良好的电池性能, 最大功率密度为0.97 W·cm-2, 在0.7 V时的功率密度约达到0.83 W·cm-2. 这种无中间缓冲层的低温制备LSCF阴极方法, 简化了电池结构及其制备过程, 同时提高了电池的性能.  相似文献   

4.
用柠檬酸硝酸盐法制备高纯Ce1-xNdxO2-x/2(x=0.10, 0.15)固溶体, 加入摩尔分数为5%的Mo, 研究了Mo掺杂对烧结温度、结构及电性能的影响. 通过X射线衍射、电感偶合等离子体和场发射扫描电镜等手段对氧化物进行了结构表征, 采用交流阻抗谱测试其电性能. 柠檬酸硝酸盐法制备的前驱体经1450 ℃烧结24 h得到致密度大于96%的陶瓷材料; 加入5%Mo, 在1250 ℃下烧结8 h即可达到理想的致密度(>95%). 加入Mo在烧结过程中可加快晶界迁移, 促进晶粒生长, 显著提高了晶界电导率. 在600 ℃时Ce0.85Nd0.15O1.925的晶界电导率为2.56 S/m, 加入Mo后材料的电导率增加到5.62 S/m.  相似文献   

5.
张建荣  高濂  顾立新 《无机化学学报》2006,22(11):2001-2004
采用水热合成法合成得到了高纯度氧化锡基纳米粉体材料,以XRD、BET、TEM等手段对合成得到的粉体进行了表征,粉体的晶粒尺寸大小为10~20 nm,分散性能良好。采用无压烧结技术对粉体进行了烧结研究。结果表明,氧化锡粉体粒径的减小提高了粉体烧结活性,烧结助剂Ni离子的加入大大促进了SnO2的烧结,当Ni离子掺杂为1at%时,SnO2陶瓷的烧结相对密度最高可达98.6%。  相似文献   

6.
采用柠檬酸溶胶凝胶燃烧合成法制备了一系列组成的(Y,Tb)3Al5O12:Ce3+,Sm3+荧光粉。通过X射线衍射、荧光光谱研究了不同Sm3+离子共掺杂浓度下(Y,Tb)AG:Ce3+荧光粉的晶体结构及光致发光性能。Rietveld全图拟合(Rietveld method of wholepattern fitting)结果表明:掺杂后样品仍为纯立方石榴石相,随着Sm3+离子共掺杂浓度的增加,样品的晶胞参数增大。在467 nm激发下,激发能由Ce3+离子向Sm3+离子单向传递,从而在617nm处出现红光发射。Tb3+离子取代不利于Ce3+离子与Sm3+离子的能量传递,同时Ce3+离子受更强的晶体场作用及与O2-离子间增强的共价性使发射主峰红移,Sm3+掺杂的TAG:Ce体系中,激发能由敏化剂Ce3+离子向激活剂Sm3+离子的传递路径包括5d→4f2F5/2,7/2(Ce3+)和7F6→5D4(Tb3+)到4G5/2→6H7/2(Sm3+)两部分。  相似文献   

7.
以Sm2O3、Gd2O3与Ce2(CO3)3.nH2O为原料,采用Sol-Gel法制备了二元稀土掺杂(Sm2O3)0.04(Gd2O3)0.06Ce0.8O2.δ纳米粉体.测定了pH值对0.80Ce(OH)4·0.08Sm(OH)3·0.12Gd(OH)3水溶胶体系zeta电位的影响.pH值约为7.0时,体系的Zeta电位为0,即体系的等电点(IEP)为7.0.pH值为10.0时,Zeta电位达到最大值-18.5my,说明此时该体系的稳定性最好.DTA/TG热分析表明,0.80Ce(OH)4·0.08Sm(OH)3·0.12Gd(OH)3粉体的热分解温度约为232℃.由粉末XRD分析可知,经750℃焙烧的二元稀土掺杂CeO2粉末为立方萤石结构,说明Sm2O3与Gd2O3已完全固溶到CeO2中形成了CeO2基固溶体.由TEM照片可以看出,粉末具有良好的分散性,呈软团聚状态,粒径在5-10nm之间.经BET测试计算的平均颗粒尺寸为11nm,与TEM结果是一致的.  相似文献   

8.
MgO掺杂Ce_(0.9)Sm_(0.1)O_(2-δ)固体电解质的结构和电性能   总被引:1,自引:0,他引:1  
采用溶胶-凝胶法合成SiO2含量为5.0×10-4(w)的Ce0.9Sm0.1O2-δ(SDC)粉体(SDCSi),并将0-3.0%(x)MgO分别加入到SDCSi陶瓷粉体中,用X射线衍射(XRD)和场发射扫描电子显微镜(FE-SEM)对材料进行表征,用交流阻抗谱(AC)测试材料的电性能.结果表明:MgO掺杂能使SDCSi的烧结温度降低100-200℃,提高陶瓷材料的致密度;清除或降低陶瓷材料晶界处SiO2杂质的有害影响,显著提高晶粒/晶界电导率和总电率;MgO掺杂到SDCSi具有烧结助剂和晶界杂质清除剂的双重作用.  相似文献   

9.
采用燃烧合成和放电等离子烧结方法制备锂掺杂ZnO陶瓷靶材. 利用XRD, SEM, TEM和激光粒径分析等手段分析合成粉体与陶瓷的显微结构. 结果表明, 锂掺杂ZnO粉体与陶瓷均为纤锌矿结构, 无其他相存在; 粉体的粒径分布为0.18-1.7 μm, 烧结体致密度较高, 晶粒尺寸为1-3 μm. 此外, 分析锂元素在烧结过程中引起掺杂缺陷变化, 锂元素由ZnO晶格的间隙位置转移为替代锌晶格位置, 实现受主掺杂, 为实现p型ZnO薄膜的制备奠定基础.  相似文献   

10.
以Sm(NO3)3.6H2O和Ce(NO3)3.6H2O为原料,用共沉淀-喷雾干燥法制备了Sm2O3掺杂CeO2(SDC)粉体。通过沉降实验、TG-DSC、XRD、BET、SEM和粒度分布对前驱体的分散性、稳定性及制得的SDC粉体性能进行表征,研究了洗涤方法、分散剂对前驱体及SDC粉体的影响。结果表明:无机陶瓷膜洗涤后前驱体分散性好,经500℃以上温度焙烧后的粉体为立方萤石型结构。加入分散剂后前驱体的分散性明显提高,制得的SDC粉体比表面积显著增加,最终获得了晶粒平均粒径为12.51 nm、团聚态颗粒为球形的SDC纳米粉体。  相似文献   

11.
以硝酸盐做氧化剂,柠檬酸为燃料,采用低温燃烧法制备纳米级超细Ce0.8Y0.2O1.9 (YDC)固溶体.利用TG-DSC,XRD,SEM,FT-IR和BET等手段对凝胶前驱体的热分解行为、相转化过程和YDC粉体的性能进行表征.TG-DSC结果表明,柠檬酸-硝酸盐干凝胶的点火温度约为263.3℃;经XRD测试,粉体经600℃焙烧即形成了单相立方萤石型结构的固溶体,晶粒度为16 ~23nm.柠檬酸与硝酸盐摩尔比(CA/N)对粉体的微观形貌、比表面积和烧结活性有显著影响.当CA/N为1.5∶1时,粉体粒子间仅有微弱的软团聚,将素坯在1400℃烧结2h,得到相对密度为95.6%,平均粒径约为0.7 μm的陶瓷烧结体.  相似文献   

12.
纳米Sm2O3掺杂CeO2粉末的制备和性能表征   总被引:2,自引:1,他引:2  
以Ce2(CO3)3和Sm2O3为原料, 用改进的氨水-双氧水沉淀法制备了CeO2和(CeO2)0.8为基质(Sm2O3)0.2的纳米粉末.对干燥后的氢氧化物进行了TG/DSC热分析, 约650 ℃时Ce(OH)4完全转变为CeO2.XRD分析表明, 650 ℃焙烧的粉末为萤石结构, 说明Sm2O3已固溶到CeO2中.经TEM测试, 粉体颗粒大小在5~10 nm之间, BET测试的平均颗粒尺寸为11.2 nm.由TEM照片还可以看出粉体具有良好的分散性, 且无硬团聚体存在.  相似文献   

13.
以柠檬酸和金属硝酸盐为原料,采用凝胶自燃烧法合成了氧化钐掺杂的氧化铈粉体Ce0.8Sm0.2O1.9,利用差热-热重分析仪、X射线衍射仪、扫描电镜等对粉体的形成条件、相组成以及表面形貌进行了表征。该实验能使学生了解固体氧化物燃料电池粉体的基本知识,熟悉柠檬酸盐凝胶自燃烧法制备粉体的原理,了解表征粉体结构的基本方法。  相似文献   

14.
采用固相反应法和柠檬酸-硝酸盐溶胶-凝胶低温自蔓延燃烧法(简称柠檬酸法)合成了La0.5Sr0.5CoO2.91(LSC)复合氧化物。借助XRD和SEM对不同制备方法合成粉体的晶体结构和晶粒形貌进行了研究。结果表明:固相反应法可制得均一钙钛矿结构的LSC氧化物,柠檬酸法除制得LSC氧化物外,还有LaSrCoO4相的生成。柠檬酸-硝酸盐溶胶-凝胶低温自蔓延燃烧法合成粉体的粒度相对较小。为研究以Ce0.9Gd0.1O1.95(GDC)为电解质的固体氧化物燃料电池阴极材料的性能,将LSC粉体与GDC粉体按6:4(质量比)制备了固体氧化物燃料电池(SOFC)的阴极片。在空气气氛下使用直流四探针法研究了烧结样品300~800℃的电导率,发现由柠檬酸法得到粉体制备的阴极片的电导率值较高。将制备的样品置于马弗炉中800℃条件下烧结800h,比较失效前后电导率的变化情况,并借助XRD,SEM等测试手段分析样品电导率变化的原因。分析发现,失效后两种样品的电导率值都有所降低,且样品中都有新相生成,晶体形貌有较大的变化。  相似文献   

15.
溶胶-凝胶低温燃烧法合成Ce1-xGdxO2-x/2固体氧化物纳米粉   总被引:2,自引:0,他引:2  
采用溶胶-凝胶低温燃烧法合成出Ce1-xGdxO2-x/2(x=0, 0.05,0.10,0.15,0.20,0.30)固体氧化物纳米粉.将用Sol-Gel法制成的干凝胶加热至300 ℃左右使之发生燃烧反应,再将燃烧产物在600 ℃焙烧2 h,即可形成单相萤石结构的氧化物粉体,其平均晶粒直径为20 nm左右.  相似文献   

16.
采用低温燃烧法制备出Li+,Er3+共掺杂Gd2O3纳米粉体,将粉体压片成型后在1500℃真空条件下烧结10 h成功制备出Li+,Er3+共掺杂Gd2O3半透明陶瓷。对粉体和半透明陶瓷样品的晶体结构、形貌、显微结构和上转换发光特性等用XRD,TEM,SEM,FL等手段进行了表征和研究。结果表明:Li+和Er3+均匀地溶解于Gd2O3晶格之中。粉体颗粒近似球形,粒径约20~30 nm。烧结后半透明陶瓷致密度高,未见气孔存在,透光率高;在980 nm LD激发下有两个峰值波长分别为561 nm(绿光)和658 nm(红光)上转换发光带,分别对应4S3/2/2H11/2→4I15/2和4F9/2→4I15/2跃迁;Li+的掺杂抑制了Gd2O3由立方到单斜的相变,且使陶瓷样品中Er3+的上转换发光强度显著增强,红绿光之比大大提高。  相似文献   

17.
以硝酸铈和氧化钆为前驱物,采用凝胶浇注工艺合成了钆掺杂氧化铈(Ce0.8Gd0.2O1.9,简称GDC)粉体。然后用流延工艺制备了GDC固体电解质薄膜,采用DTA-TG,XRD,TEM等方法研究了粉体的相形成,粒度等与合成工艺的关系,通过密度测定及显微组织观察等技术研究了流延生坯的烧结性能。借助交流阻抗谱仪对所制备的GDC电解质膜的电导率进行了测量。结果表明,采用本实验的凝胶浇注方法,在700℃温度下煅烧干凝胶,即可制备出纯度高,组成均匀,相结构完整,纳米粒度的GDC粉体。而且所得粉体具有较高的烧结活性,其流延生坯经1450℃烧结后的相对密度可达95%以上,所得GDC电解质膜在700℃空气中的氧离子电导率可达4.6S/m.  相似文献   

18.
用柠檬酸溶胶-凝胶法制备了Ce0.8Sm0.2O2-δ(SDC)和Sm1.2Sr0.8Co1-xNixO4+δ(x=0.0,0.1,0.2)(SSCN)系列纳米粉体,并用热差分析、XRD粉末衍射和透射电镜方法对SSCN系列进行表征。以碳纸支撑的SSCN系列粉体为阴极、Nafion膜为电解质、碳纸支撑的NiO-SDC还原后得到的Ni-SDC粉体为阳极,以湿氢气和氮气为原料,在低温常压下研究了其在电化学合成氨中的性能。结果表明,在25~100℃和施加电压的条件下,使用SSCN系列粉体为阴极时均有氨气生成,其中Sm1.2Sr0.8Co0.9Ni0.1O4+δ作阴极时电化学合成氨的性能最佳,在80℃和0.5V时氨的产率为4.89×10-9mol/(s·cm2)。  相似文献   

19.
缓冲溶液法制备氧化钐稳定氧化锆纳米粉体及其表征   总被引:1,自引:1,他引:1  
以硝酸盐为前驱体、NH3·H2O-NH4HCO3为复合沉淀剂,采用缓冲溶液法制备了含4%~12%(摩尔分数)Sm2O3的ZrO2粉体。通过X射线衍射、透射电镜及比表面吸附法等对所得粉体的相结构、形貌和粒度进行了测定。所得粉体经冷等静压成形后,在1300~1500℃下烧结5h,得到烧结体。采用阿基米德法(水介质)测定了烧结体的密度,采用扫描电镜对烧结体的微结构进行了观测,并通过交流阻抗谱法测定了烧结体的电导率。实验结果表明:当Sm2O3掺杂量大于8%时,在600℃煅烧共沉淀物可得到具有立方结构的氧化钐稳定氧化锆(SSZ)粉体,其颗粒形状规则,粒径在10~20nm。随着Sm2O3掺杂量的增加和烧结温度的升高,烧结体的相对密度增加,1500℃烧结的掺杂12%Sm2O3的ZrO2(12SSZ)烧结体的相对密度为96.91%。在500~800℃的测量范围内,SSZ烧结体的电导率与温度成线性关系,12SSZ在800℃时的电导率可达0.043S·cm^-1,电导活化能为0.72eV。  相似文献   

20.
以低温燃烧合成工艺制备掺杂粉体,研究过渡金属氧化物(NiO,CuO,MnO_2,V_2O_5等)对Ce_(0.8)Sm_(0.2)O_(1.9)(SDC)电解质晶体结构的影响。用XRD,SEM,TEM等检测方法,表征Ce_(0.8)Sm_(0.2)O_(1.9)粉体掺杂过渡金属氧化物后晶体结构发生的变化。结果表明:SDC晶体掺杂过渡金属后,晶格发生不同程度膨胀,其中,掺杂NiO和CuO对SDC晶格产生的膨胀效果最为显著。SDC晶体结构的变化,必将引起其离子导电性、热学性能等重要性能的变化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号