首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 148 毫秒
1.
本文根据聚合物电解质膜燃料电池操作温度、使用的电解质和燃料的不同,将其分为高温质子交换膜燃料电池、低温质子换膜燃料电池、直接甲醇燃料电池和阴离子交换膜燃料电池,综述了它们所用电解质膜的最新进展.第一部分简要介绍了这4种燃料电池的优点和不足.第二部分首先介绍了Nafion膜的结构模型,并对平行柱状纳米水通道模型在介观尺度上进行了修正;接着分别对应用于不同燃料电池的改性膜的改性思路作了分析;最后讨论了用于不同燃料电池的新型质子交换膜的研究,同时列举了性能突出的改性膜和新型质子交换膜.第三部分介绍了阴离子交换膜的研究现状.第四部分对未来聚合物电解质膜的研究作了展望.  相似文献   

2.
侯宏英 《物理化学学报》2015,30(8):1393-1407
最近,碱性聚合物电解质膜燃料电池(APEMFC)因具有电极反应动力学快以及不依赖于贵金属铂催化剂等诸多优点而成为一个热门话题. 作为其中一个关键部件,碱性聚合物电解质膜直接影响燃料电池的性能和成本.然而,迄今为止,仍然没有令人满意的碱性电解质膜材料. 为此,大量研究被开展和报道. 本文综述了近三年内文献中关于燃料电池碱性聚合物电解质膜的最新研究进展:包括各种各样的合成策略,构效关系,水管理以及非原位或原位稳定性测试等等. 尤其是一些新的金属离子基阴离子交换膜和冠醚基阴离子交换膜首次被提及和评论.此外,还进一步预测了将来的发展趋势.  相似文献   

3.
侯宏英 《物理化学学报》2001,30(8):1393-1407
最近,碱性聚合物电解质膜燃料电池(APEMFC)因具有电极反应动力学快以及不依赖于贵金属铂催化剂等诸多优点而成为一个热门话题. 作为其中一个关键部件,碱性聚合物电解质膜直接影响燃料电池的性能和成本.然而,迄今为止,仍然没有令人满意的碱性电解质膜材料. 为此,大量研究被开展和报道. 本文综述了近三年内文献中关于燃料电池碱性聚合物电解质膜的最新研究进展:包括各种各样的合成策略,构效关系,水管理以及非原位或原位稳定性测试等等. 尤其是一些新的金属离子基阴离子交换膜和冠醚基阴离子交换膜首次被提及和评论.此外,还进一步预测了将来的发展趋势.  相似文献   

4.
氧化石墨烯/聚合物复合质子交换膜(GO/Polymer blend PEM)是一种新型的质子交换膜,广泛应用于直接甲醇燃料电池(DMFC)中,已成为质子交换膜研究的热点之一。氧化石墨烯/聚合物复合质子交换膜具有较高的传导质子率、力学性能、阻醇性能和电池性能。本文综述了氧化石墨烯(GO)处理方法、氧化石墨烯/聚合物复合质子交换膜制备方法,氧化石墨烯/聚合物复合质子交换膜的质子传导、阻醇、离子交换容量和电池的性能,氧化石墨烯/聚合物复合质子交换膜质子传递机理及阻醇机理。  相似文献   

5.
碱性阴离子交换聚合物膜研究进展   总被引:2,自引:0,他引:2  
碱性燃料电池(AFCs)是一种直接将化学能转化为电能的发电装置,因其高效、环保等优点,得到了科学界与工业界的广泛关注。阴离子交换聚合物膜作为碱性阴离子交换膜燃料电池的核心组成部分,要求其具备优异的电导率、良好的化学稳定性及力学强度。本文主要从聚合物主链及阳离子官能团的结构与性能之间的关系及调控方式方面,综述了碱性阴离子交换膜的研究进展。  相似文献   

6.
最近,碱性聚合物电解质膜燃料电池(APEMFC)因具有电极反应动力学快以及不依赖于贵金属铂催化剂等诸多优点而成为一个热门话题.作为其中一个关键部件,碱性聚合物电解质膜直接影响燃料电池的性能和成本.然而,迄今为止,仍然没有令人满意的碱性电解质膜材料.为此,大量研究被开展和报道.本文综述了近三年内文献中关于燃料电池碱性聚合物电解质膜的最新研究进展:包括各种各样的合成策略,构效关系,水管理以及非原位或原位稳定性测试等等.尤其是一些新的金属离子基阴离子交换膜和冠醚基阴离子交换膜首次被提及和评论.此外,还进一步预测了将来的发展趋势.  相似文献   

7.
质子交换膜是质子交换膜燃料电池的核心部件之一,其性能的优劣直接关系燃料电池的工作性能。目前质子交换膜燃料电池多采用全氟磺酸离子膜,全氟磺酸膜虽然具有较高的质子传导性和良好的化学稳定性,但是也具有价格昂贵、甲醇渗透高和高温下质子传导性能下降等缺点。为了克服全氟磺酸膜的不足,国内外相继开展了非氟质子交换膜的研究,如磺化聚醚醚酮(SPEEK)、磺化聚醚醚酮酮(SPEEKK)、磺化聚砜(SPSU)和磺化聚酰亚胺(SPI)等。  相似文献   

8.
聚合物质子交换膜是燃料电池的一个重要组成部分,也是目前研究的热点技术。本文对燃料电池用聚合物质子交换膜领域的专利申请状况进行了分析,从全氟型磺化聚合物质子交换膜、部分含氟型磺化聚合物质子交换膜和非含氟型磺化聚合物质子交换膜等3个方面出发,归纳出该技术领域的技术发展路线,并对该技术领域的发展做出展望。  相似文献   

9.
低温质子交换膜燃料电池的商业化受到高纯度氢气制取、储存、运输及加注的制约。将燃料电池工作温度提高到200-250 ℃可显著提高电极动力学,提高对一氧化碳等杂质气体的耐受性,降低氢气制取成本,简化水和热管理,为燃料电池提供更多燃料选择,使得高温质子交换膜燃料电池有望实现原位甲醇重整制氢系统与燃料电池系统的无温差耦合,同时较高的运行温度为直接甲醇燃料电池和非贵金属催化剂替代铂基催化剂提供了有利条件。但超高温(200-250 ℃)聚合物电解质膜燃料电池的发展依然面临着艰巨的挑战,为促进超高温聚合物电解质膜燃料电池的发展,本文将系统总结近年的相关进展,探讨超高温聚合物电解质膜燃料电池面临的机遇与挑战。  相似文献   

10.
<正>质子交换膜是燃料电池的重要组成部分,可利用其实现氢能转化为电能的输出,质子交换膜已成为国内外能源化学的研究热点~([1-2])。目前市场供应的质子交换膜多以磺酸基团(-SO_3H)为质子传递单元,若要提高质子交换膜的电导率,则必须增大质子交换膜上磺酸的含量。相关行业以离子交换当量衡量质子交换膜内酸的含量,质子交换膜的离子交换当量越低,膜上质子传导率越高,内电阻越小,利  相似文献   

11.
We report a specially designed alkaline polymer electrolyte (APE) with extraordinary stability in both physical and chemical properties, which enables applications of fuel cells and electrolysis at elevated temperatures.  相似文献   

12.
An in-situ fuel cell reference electrode (RE) consisting of a Pd-coated Pt wire exhibits stable potentials in alkaline polymer electrolyte membrane fuel cells (APEMFC). Results indicate that the overpotential and impedance of the anode are higher than those of the cathode in the cells tested (even at low currents); this is contrary to that found in proton-exchange membrane fuel cells (PEMFC) and it shows that caution is required when translating prior understating of PEMFC to APEMFC. The working hypothesis is that there is flooding-derived mass transport loss at the anode (where water is electro-generated).  相似文献   

13.
Polymer electrolyte membrane fuel cells (PEMFC) have been recognized as a significant power source in future energy systems based on hydrogen. The current PEMFC technology features the employment of acidic polymer electrolytes which, albeit superior to electrolyte solutions, have intrinsically limited the catalysts to noble metals, fundamentally preventing PEMFC from widespread deployment. An effective solution to this problem is to develop fuel cells based on alkaline polymer electrolytes (APEFC), which no...  相似文献   

14.
A novel alkaline polymer has been developed as an interfacial material for use in the preparation of metal-cation-free alkaline membrane electrode assemblies (MEAs) for all-solid-state alkaline fuel cells (AFCs) with long-term performance stability.  相似文献   

15.
There is growing interest in the use of fuel cells (FC) with hydrogen as the main fuel for stationary, mobile, and transportation applications. In the FC concept membranes play increasingly important roles. Polymer electrolyte membrane fuel cells (PEMFCs) are considered as the most promising fuel cell technology for a wide range of applications due to the stable operation, the high energy generation yield and the simplicity of the system.In this work, we develop different types of membranes based on poly(vinyl alcohol) (PVA). PVA is a water-soluble polymer that is used in practical applications because of its easy preparation, excellent chemical resistance, thermal and mechanical properties. Crosslinking of the PVA was performed by gamma irradiation since radiation chemistry is found to be a very effective method for constructing three-dimensional polymeric networks. The samples prepared in this way were then immersed in the alkaline solution over a certain period of time to turn them into conductive membranes. Ionic conductivity of the PVA hydrogels, was then measured as a function of concentration of KOH solutions and temperature. Cyclic voltammetry of these PVA hydrogel electrolytes was performed to determine the width of the electrochemical stability window.We examined these membranes impregnated with saturated 6 M KOH electrolyte as polymer membrane for fuel cells application. Our experiments showed that PEMFCs with PVA and Nafion® membranes had similar polarization curves, under same conditions. Furthermore, PVA membranes proved to be stable during the real cell tests. This study offers a possibility for more earnest approach to the use of PVA membranes for fuel cell applications.  相似文献   

16.
报道了一种具有短程自交联结构的碱性聚合物电解质.由于聚合物的交联仅发生在成膜过程且不需要外加交联剂,因此既可获得稳定的聚合物溶液供电化学器件制作使用,又可获得具有优异耐高温抗溶胀性能的交联型聚合物膜.此碱性聚合物电解质膜在室温纯水中电导率超过20mScm^-1,在90℃热水中电导率达到63mScm^-1且经过1000h后仅下降4%.在90℃水中膜溶胀率仅3%且具有良好的机械性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号