首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 589 毫秒
1.
A flexible poly(dimethyl siloxane) diacrylate (PDMSDA) crosslinker was synthesized using different molecular weights of poly(dimethyl siloxane) (PDMS, M n =550, 1,700, 4,000 g/mol). The monodisperse polystyrene (PS) particles crosslinked with various contents of PDMSDA were prepared by dispersion polymerization, and applied as seed particles in the seeded polymerization. The crosslinking density of the PS particles was determined from the rate of transport of the monomer molecules to the crosslinked seed particles. It was confirmed that the monomer swelling capacity of seed particles and final morphological changes of polymer beads were determined significantly by the crosslinking density of the seed particles. In addition, the morphological change was not observed without the oligomer swelling step in the seeded polymerization due to the hydrophobic property of PDMS. When highly crosslinked seed particles were used in the seeded polymerization, peculiar morphology (doublet structure) of polymer beads appeared.  相似文献   

2.
New flame-retardant nano/micro particles of sizes ranging between 0.06 ± 0.01 and 1.70 ± 0.23 μm were formed by dispersion polymerization of the pentabromobenzyl acrylate monomer (PBBA) in methyl ethyl ketone as a continuous phase. The effect of various polymerization parameters, e.g., monomer concentration, initiator type and concentration, stabilizer concentration and crosslinker monomer concentration, on the size, size distribution and polymerization yield of the produced poly(pentabromobenzyl acrylate) particles has been elucidated. Poly(pentabromobenzyl acrylate)/polystyrene (PPBBA/PS) nano/micro blends of the contents of different PPBBA particles were prepared by mixing the PPBBA particles with a PS solution in methylene chloride, followed by evaporation of the methylene chloride from the mixture. The thermal stability of these blends was also studied.  相似文献   

3.
St/交联剂乳液共聚包覆硬脂酸改性碳酸钙颗粒的研究   总被引:2,自引:0,他引:2  
在硬脂酸改性的纳米碳酸钙存在下,通过苯乙烯(St)与多乙烯基单体的乳液共聚合,制备了以纳米碳酸钙为核,以交联聚苯乙烯(PS)为壳的交联型PS/碳酸钙复合纳米粒子.研究了多乙烯基单体的种类和用量以及碳酸钙的用量对聚合反应以及包覆的影响.结果表明,多乙烯基单体以及碳酸钙的引入会使聚合反应速率有不同程度的降低;使用1%~5%的TMPTMA或DVB,可实现PS对碳酸钙颗粒的牢固包覆,不可抽提的PS达94%以上;当碳酸钙用量改变时,需要适当调整乳化剂和多乙烯基单体的用量;IR和TGA的结果表明,随着碳酸钙用量增加,产物中的碳酸钙含量也相应增加;TEM照片和计算结果显示,当碳酸钙用量为14.8%时,绝大部分碳酸钙颗粒被包覆,且基本上每个乳胶粒中包覆一个碳酸钙颗粒,复合粒子具有清晰的核壳结构,壳层厚度约为10 nm,而当碳酸钙用量增加到29.3%和58.7%时,壳层厚度减小,并且出现较多裸露的碳酸钙颗粒.  相似文献   

4.
Dual‐responsive micrometer‐sized core‐shell composite polymer particles were prepared by dispersion polymerization followed by seeded copolymerization. Polystyrene (PS) particles prepared by dispersion polymerization were used as core particles. N‐isopropyl acrylamide (NIPAM) and methacrylic acid (MAA) were used to induce dual‐responsive that is thermo‐ and pH‐responsive properties in the shell layer of composite polymer particles, prepared by seeded copolymerization with PS core particles. Temperature‐ and pH‐dependent adsorption behaviors of some macromolecules on composite polymer particles indicate that produced composite polymer particles exhibit dual‐responsive surface properties. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
Polystyrene (PS) microspheres coated with β‐cyclodextrin (β‐CD) were fabricated via γ‐ray‐induced emulsion polymerization in a ternary system of styrene/β‐CD/water (St/β‐CD/water). The solid inclusion complex of St and β‐CD particles formed at the St droplets–water interface can stabilize the emulsion as the surfactant. TEM and XPS results showed that β‐CD remains on the surface of PS particles. The average size of the PS particles increases from 186 to 294 nm as the weight ratio of β‐CD to St rises from 5% to 12.5%. The water contact angle (CA) of PS latex film is lower than 90°, and reduces with the β‐CD content even to 36°. Thus, this work provides a new and one‐pot strategy to surface hydrophilic modification on hydrophobic polymer particles with cyclodextrins through radiation emulsion polymerization.  相似文献   

6.
The spatial inhomogeneity in polystyrene (PS) gels has been investigated with the static light scattering technique. PS gels were prepared starting from styrene monomer and ethylene glycol dimethacrylate crosslinker in a homogeneous solution. The gel synthesis parameters varied were the crosslinker concentration, the primary chains length and the quality of the polymerization solvent. The gels were characterized by elasticity tests as well as by light scattering measurements at a gel state just after their preparation. The degree of spatial gel inhomogeneity decreased with decreasing crosslinker content, with decreasing primary chain length or, with increasing quality of the polymerization solvent. It was shown that the gel synthesis parameters varied mainly affect the distance between the pendant vinyl groups locating on the same macromolecule during the gel formation process. Increasing the distance between the pendant vinyl groups reduces the rate of the multiple crosslinking reactions so that the resulting PS gels exhibit a lesser degree of inhomogeneity.  相似文献   

7.
Monodisperse, thermosensitive poly(N‐ethyl methacrylamide) microgel particles were prepared by the batch precipitation/emulsion polymerization of water‐soluble N‐ethyl methacrylamide and the hydrophobic crosslinker ethylene glycol dimethacrylate initiated by potassium persulfate. Particular attention was paid to the effect of the crosslinker agent on the polymerization process (kinetics, conversion, and water‐soluble oligomer content). Particles were characterized in terms of their size distribution and swelling capacity. A polymerization mechanism for the water‐soluble monomer and non‐water‐soluble crosslinker is proposed and discussed on the basis of a combination of both emulsion and precipitation polymerization processes. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1808–1817, 2002  相似文献   

8.
Summary: Submicron core-shell particles of polystyrene (PS) and polystyrene-co-poly(methyl methacrylate) (PS-co-PMMA) coated with PMMA were obtained by emulsion photopolymerization. The seeds of PS or PS-co-PMMA were prepared by emulsion polymerization with or without emulsifier and a ratio of functional monomer and crosslinker (SVBS/EDGMA) in order to obtain different surfaces for the subsequent coating with PMMA. At each stage, the evolution of the average particle size were monitored by using photon correlation spectroscopy (DLS) and the final polymer particles was analyzed via transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). The core-shell morphology was identified as the increase of the average particle size in the second stage by DLS technique and by the direct observation by TEM of the differentiation between PS core and PMMA shell, and by the presence of two glass transition temperatures (Tg) as a consequence of the existence of two partially miscible phases.  相似文献   

9.
Anisotropic polystyrene/poly(styrene-co-divinylbenzene) (PS/P(S-DVB)) protrusion particles with various morphologies such as eyeball-like, snowman-like, and raspberry-like were synthesized using a modified seeded polymerization method by dynamically controlling and stabilizing the phase separation. The effects of swelling agent, crosslinker, and monomer concentrations on the particle morphologies were studied. Using the PS/P(S-DVB) protrusion particles as templates, anisotropic silica (SiO2) hollow microspheres were fabricated facilely. The obtained anisotropic silica hollow spheres had a potential application in rapid waste removal and detoxification extraction with a very simple procedure.  相似文献   

10.
Monodisperse micron‐sized polystyrene particles crosslinked with a novel poly(ethylene oxide)‐poly(propylene oxide)‐poly(ethylene oxide) triblock diol diacrylate (t‐BDDA) were produced via simple dispersion polymerization. It was established that the monomer‐diffusible surface characteristics of primary particles played a decisive role in producing the monodisperse crosslinked polymer particles. We named this concept a diffusion‐controlled polymerization method, DPM. Here in this study, particularly, t‐BDDA is proposed as a very useful crosslinker capable of self‐assembling and crosslinking in the process of particle formation and particle growth.  相似文献   

11.
于建 《高分子科学》2004,(6):573-579
The encapsulation of stearic acid coated nanometer CaCO3 by a polystyrene (PS) network via emulsion polymerization is described, where γ-methacryloxypropyltrimethoxysilane (MPS) was used as an efficient crosslinker. The important factors such as the type and amount of surfactant and initiator and the content of CaCO3 are investigated as well as the role of MPS. It has been shown that little PS was extractable with only 0.6 wt% of MPS (relative to styrene). The cationic surfactant cetyl trimethylammonium bromide (CTAB) proved more effective than the anionic surfactant sodium dodecyl sulfonate (SDS). The yield rises, particles become smaller and size distribution broadens with increased amount of CTAB. It is also found that either 2,2′-azobis(isobutyronitrile) (AIBN) or ammonium persulfate (APS) is suitable for attaining high monomer conversion. With increased amount of CaCO3, the encapsulation ratio can be varied from 17.9 to 3.6, while monomer conversion and yield decrease slightly. FT-IR spectra of the products after extraction indicate tight encapsulation between PS and CaCO3, and TEM photographs of composite particles with well-defined core-shell structure give direct evidence of encapsulation.  相似文献   

12.
采用在苯乙烯 (St)悬浮聚合过程中滴加甲基丙烯酸甲酯 (MMA)乳液聚合组分的悬浮 乳液复合聚合方法 ,制备大粒径聚苯乙烯 聚甲基丙烯酸甲酯 (PS PMMA)复合粒子 .研究聚合物粒径分布和颗粒形态的变化发现 ,在St悬浮反应中期滴加MMA乳液聚合组分后 ,聚合体系逐渐由悬浮粒子与乳胶粒子并存向形成单峰分布复合粒子转变 ,最终形成核 壳结构完整的大粒径PS PMMA复合粒子 ;在St悬浮反应初期滴加MMA乳液聚合组分 ,St与MMA一起分散成更小液滴 ,反应后期凝并成非核 壳结构复合粒子 ;在St悬浮反应后期滴加MMA乳液聚合组分 ,PMMA乳胶粒子与PS悬浮粒子基本独立存在 .根据以上结果 ,提出了St MMA悬浮 乳液复合聚合的成粒机理 .  相似文献   

13.
Poly(methyl methacrylate) (PMMA)–polystyrene (PS) composite polymer particles were synthesized in the presence of a surfactant by two‐stage seeded emulsion polymerization. The first stage was the synthesis of PMMA particles by soapless emulsion polymerization; the second stage was the synthesis of the PMMA–PS composite polymer particles with the PMMA particles as seeds. In the second stage of the reaction, three kinds of surfactants—sodium laurate sulfate (SLS), polyoxyethylene (POE) sorbitan monolaurate (Tween 20), and sorbitan monolaurate (Span 20)—were used to synthesize the PMMA–PS composite particles. Both the properties and concentrations of the surfactants influenced the morphology of the composite particles significantly. Core–shell composite particles, with PS as the shell and PMMA as the core, were synthesized in the presence of a low concentration of the hydrophilic surfactant SLS. This result was the same as that in the absence of the surfactant. However, a low concentration of Tween 20 led to composite particles with a core/strawberry‐like shell morphology; the core region was a PS phase, and the strawberry‐like shell was a PS phase dispersed in a PMMA phase. With an increase in the concentration of SLS, the morphology of the composite particles changed from core (PMMA)–shell (PS) to core (PS)–shell (PMMA). Moreover, the effects of a high concentration of Tween 20 or Span 20 on the morphology of the PMMA–PS composite particles were investigated in this study. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2224–2236, 2005  相似文献   

14.
Summary: Submicron-sized monodisperse PS particles were prepared by dispersion polymerization of styrene in ionic liquids with poly(vinylpyrrolidone) as stabilizer. Seeded dispersion polymerization of MMA was subsequently carried out with PS seeds in [Bmim][BF4] to prepare PS/PMMA composite particles. Observation of the obtained particles of ultrathin cross-sections with a scanning and transmission electron microscope revealed that no secondary nucleation occurred during the seeded dispersion polymerization and that the particles have a core-shell morphology consisting of a PS core and a PMMA shell. Successful preparation of PS/PMMA composite particles in an ionic liquid has thus been demonstrated. Moreover, PS/PAA (PS-core/PAA-shell) composite particles were prepared by seeded dispersion polymerization in [DEME][TFSI], illustrating that hydrophobic/hydrophilic composite particles can be readily prepared in the ionic liquid.  相似文献   

15.
Modified porous PVC particles are studied as absorbents of o‐dichlorobenzene (DCB), from water. The modified particles were produced by an in‐situ stabilizer‐free polymerization/crosslinking of a monomer/crosslinker/peroxide solution absorbed within commercial porous suspension‐type PVC particles. The modifying monomers used include styrene with divinyl benzene (DVB) as a crosslinking comonomer, methyl methacrylate (MMA), butyl acrylate (BA), or ethylhexyl acrylate (EHA) with ethylene glycol dimethacrylate (EGDMA) as a crosslinking comonomer. The effect of the nature of the monomers, morphology, porosity, surface area and composition of the modified PVC particles on DCB absorption was studied. Batch experiments (absorption rate and isotherms) were used to screen the PVC absorbents on the basis of absorption rate and absorption capacity. Continuous absorption column experiments were conducted to study the parameters characterizing the absorption process. Both the unmodified and modified PVC particles absorb DCB from water. The PBA and PEHA‐modified PVC particles approach equilibrium capacity faster and have greater absorption capacity than neat PVC, PS‐modified PVC and PMMA‐modified PVC particles. The absorption characteristics are influenced by the modifying polymer's Tg. The rubbery nature of PBA and PEHA yields better absorption in spite of the significantly lower surface area and porosity obtained in the modified PVC particles. Thus, indicating that fast adsorption followed by bulk absorption of DCB is taking place. A clear influence of the crosslinking effect was not established. The continuous absorption experiments were found more efficient than the batch absorption experiments. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
The synthesis of poly(N-ethylmethacrylamide) (NEMAM) thermosensitive particles functionalized with phenylboronic acid (PhBA) groups has been performed by emulsion/precipitation polymerization of NEMAM in water at 90 °C, using ethylene glycol dimethacrylate (EGDMA) as an hydrophobic crosslinker, phenylboronic acid methacrylamide (PhBAMA) as a functional monomer, and potassium persulfate (KPS) as an initiator. The influences of the PhBAMA concentration and mode of monomer addition (batch or shot-growth processes) have been examined both on the polymerization kinetics and on the physicochemical and colloidal properties of the final particles. Results have been discussed according to the ionogenic and hydrophobic nature of the functional monomer. We have directly and clearly provided evidence that PBA was successfully incorporated at the particle surface by using ESCA analysis, especially when using a shot-growth process, a result that was indirectly confirmed by investigating the electrophoretic mobility behavior of the various latexes as a function of pH.  相似文献   

17.
New microgel particles produced by using N‐vinylcaprolactam (VCL) and poly(ethylene glycol) diacrylate (PEGDA) or N,N′‐methylenbisacrylamide (BA) were synthesized in a batch reactor. The influence of the concentration and type of crosslinker on polymerization kinetics and colloidal characteristics of such temperature‐sensitive particles was studied. The partial and total conversion evolutions of VCL, PEGDA, and BA were determined by quantitative 1H NMR and the average diameters of microgel particles together with the swelling–deswelling behavior were analyzed by means of photon correlation spectroscopy (PCS). Partial and total conversions, final average diameters at collapsed state, and the swelling–deswelling behavior varied as a function of the type of crosslinker. These results were attributed to the higher solubility and stabilizing ability of PEGDA compared with that of BA. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2766–2775, 2008  相似文献   

18.
Polystyrene (PS) particles were prepared via Pickering emulsion polymerization using graphene oxide (GO) as the stabilizer. The results show that pH is an important factor in the stability of Pickering emulsions. The effects of two different phase initiators, the water phase initiator potassium persulfate and the oil phase initiator azobisisobutyronitrile, on the morphology of PS particles in Pickering emulsion polymerization had been investigated in detail. Wrinkled particles were prepared using the water phase initiator, and spherical particles were prepared using the oil phase initiator. In addition, hexadecane was used as the auxiliary stabilizer in the polymerization, which narrowed the diameter distribution of the PS spheres, and the hollow PS spheres were fabricated. The size of the GO particles also influenced the final morphology of the particles. Nano-sized polymer particles were grafted onto the surface of micro-sized GO. Small GO particles were suitable for Pickering emulsion polymerization to prepare the composite particles. The thermogravimetric analysis of the prepared particles confirmed that they were PS/GO composite particles, which could have a wide range of potential applications, such as in catalysts, sensors, environmental remediation, and energy storage.  相似文献   

19.
In this work, Fe3O4/polystyrene/poly(N‐isopropylacryl amide‐co‐methylacrylate acid) (Fe3O4/PS/P(NIPAAM‐co‐MAA)) magnetic composite latex was synthesized by the method of two stage emulsion polymerization. In this reaction system, 2,2′‐azobis(2‐methyl propionamidine) dihydrochloride (AIBA) was used as initiator to initiate the first stage reaction and second stage reaction. The Fe3O4 particles were prepared by a traditional coprecipitation method. Fe3O4 particles were surface treated by either PAA oligomer or lauric acid to form the stable ferrofluid. The first stage for the synthesis of magnetic composite latex was to synthesize PS in the presence of ferrofluid by soapless emulsion polymerization to form the Fe3O4/PS composite latex particles. Following the first stage of reaction, the second stage of polymerization was carried out by the method of soapless emulsion polymerization with NIPAAM and MAA as monomers and Fe3O4/PS latex as seeds. The magnetic composite particles, Fe3O4/PS/P(NIPAAM‐co‐MAA), were thus obtained. The mechanism of the first stage reaction and second stage reaction were investigated. Moreover, the effects of PAA and lauric acid on the reaction kinetics, morphology, and particle size distribution were studied. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3912–3921, 2007  相似文献   

20.
This article reports on the preparation of environmentally responsive "hairy" nanoparticles by growth of mixed poly(tert-butyl acrylate) (PtBA)/polystyrene (PS) brushes from silica particles using living radical polymerization techniques and subsequent hydrolysis of PtBA to produce amphiphilic mixed poly(acrylic acid) (PAA)/PS brushes. Silica particles were synthesized by the Stober process and were functionalized with an asymmetric difunctional initiator-terminated monolayer. Surface-initiated atom transfer radical polymerization of tBA was carried out in the presence of a free initiator. Kinetics study showed that the polymerization was well controlled. By cleaving PtBA off the particles, the molecular weights of the grafted and free polymers were found to be essentially identical. Mixed PtBA/PS brushes were obtained by the nitroxide-mediated radical polymerization of styrene from PtBA particles. The M(n) of the grafted PS was found to be the same as that of the free PS formed in the solution from the free initiator. Amphiphilic mixed PAA/PS brush-coated nanoparticles were synthesized from mixed PtBA/PS particles by hydrolysis of PtBA with iodotrimethylsilane. Tyndall scattering experiments and (1)H NMR study showed that the mixed PAA/PS particles can be dispersed and form a stable suspension in CHCl(3), a selective solvent for PS, and also in CH(3)OH, a selective solvent for PAA, demonstrating the capability of these hairy nanoparticles to undergo chain reorganization in response to environmental changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号