首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider a class of weakly coupled systems of elliptic operators \({\mathcal{A}}\) with unbounded coefficients defined in \({\mathbb{R}^N}\). We prove that a semigroup (T(t))t ≥ 0 of bounded linear operators can be associated with \({\mathcal{A}}\), in a natural way, in the space of all bounded and continuous functions. We prove a compactness property of the semigroup as well as some uniform estimates on the derivatives of the function T(t)f, when f belongs to some spaces of Hölder continuous functions, which are the key tools to prove some optimal Schauder estimates for the solution to some nonhomogeneous elliptic equations and Cauchy problems associated with the operator \({\mathcal{A}}\). Under suitable additional conditions, we then prove that the restriction of the semigroup to the subspace of smooth and compactly supported functions extends by a strongly continuous semigroup to L p -spaces over \({\mathbb{R}^N}\), related to the Lebesgue measure, when \({p \in [1,\infty)}\). We also provide sufficient conditions for this semigroup to be analytic when \({p \in [1,\infty)}\). Finally, we prove some L p ?L q -estimates.  相似文献   

2.
Let E(Xf) be the Ellis semigroup of a dynamical system (Xf) where X is a compact metric space. We analyze the cardinality of E(Xf) for a compact countable metric space X. A characterization when E(Xf) and \(E(X,f)^* = E(X,f) \setminus \{ f^n : n \in \mathbb {N}\}\) are both finite is given. We show that if the collection of all periods of the periodic points of (Xf) is infinite, then E(Xf) has size \(2^{\aleph _0}\). It is also proved that if (Xf) has a point with a dense orbit and all elements of E(Xf) are continuous, then \(|E(X,f)| \le |X|\). For dynamical systems of the form \((\omega ^2 +1,f)\), we show that if there is a point with a dense orbit, then all elements of \(E(\omega ^2+1,f)\) are continuous functions. We present several examples of dynamical systems which have a point with a dense orbit. Such systems provide examples where \(E(\omega ^2+1,f)\) and \(\omega ^2+1\) are homeomorphic but not algebraically homeomorphic, where \(\omega ^2+1\) is taken with the usual ordinal addition as semigroup operation.  相似文献   

3.
Let A be a bounded linear operator and P a bounded linear projection on a Banach space X. We show that the operator semigroup \({(e^{t(A-kP)})_{t \ge 0}}\) converges to a semigroup on a subspace of X as \({k \to \infty}\) and we compute the limit semigroup.  相似文献   

4.
Let G be a group. We show that the Birget–Rhodes prefix expansion \(G^{Pr}\) and the Margolis–Meakin expansion M(Xf) of G with respect to \(f:X\rightarrow G\) can be regarded as inverse subsemigroups of a common E-unitary inverse semigroup P. We construct P as an inverse subsemigroup of an E-unitary inverse monoid \(U/\zeta \) which is a homomorphic image of the free product U of the free semigroup \(X^+\) on X and G. The semigroup P satisfies a universal property with respect to homomorphisms into the permissible hull C(S) of a suitable E-unitary inverse semigroup S, with \(S/\sigma _S=G\), from which the characterizing universal properties of \(G^{Pr}\) and M(Xf) can be recaptured easily.  相似文献   

5.
For a Tychonoff space X, we denote by C p (X) the space of all real-valued continuous functions on X with the topology of pointwise convergence.
In this paper we prove that:
  • If every finite power of X is Lindelöf then C p (X) is strongly sequentially separable iff X is \({\gamma}\)-set.
  • \({B_{\alpha}(X)}\) (= functions of Baire class \({\alpha}\) (\({1 < \alpha \leq \omega_1}\)) on a Tychonoff space X with the pointwise topology) is sequentially separable iff there exists a Baire isomorphism class \({\alpha}\) from a space X onto a \({\sigma}\)-set.
  • \({B_{\alpha}(X)}\) is strongly sequentially separable iff \({iw(X)=\aleph_0}\) and X is a \({Z^{\alpha}}\)-cover \({\gamma}\)-set for \({0 < \alpha \leq \omega_1}\).
  • There is a consistent example of a set of reals X such that C p (X) is strongly sequentially separable but B1(X) is not strongly sequentially separable.
  • B(X) is sequentially separable but is not strongly sequentially separable for a \({\mathfrak{b}}\)-Sierpiński set X.
  相似文献   

6.
In this paper, we study the existence and multiplicity of homoclinic solutions for the following second-order p(t)-Laplacian–Hamiltonian systems
$$\frac{{\rm d}}{{\rm d}t}(|\dot{u}(t)|^{p(t)-2}\dot{u}(t))-a(t)|u(t)|^{p(t)-2}u(t)+\nabla W(t,u(t))=0,$$
where \({t \in \mathbb{R}}\), \({u \in \mathbb{R}^n}\), \({p \in C(\mathbb{R},\mathbb{R})}\) with p(t) > 1, \({a \in C(\mathbb{R},\mathbb{R})}\), \({W\in C^1(\mathbb{R}\times\mathbb{R}^n,\mathbb{R})}\) and \({\nabla W(t,u)}\) is the gradient of W(t, u) in u. The point is that, assuming that a(t) is bounded in the sense that there are constants \({0<\tau_1<\tau_2<\infty}\) such that \({\tau_1\leq a(t)\leq \tau_2 }\) for all \({t \in \mathbb{R}}\) and W(t, u) is of super-p(t) growth or sub-p(t) growth as \({|u|\rightarrow \infty}\), we provide two new criteria to ensure the existence and multiplicity of homoclinic solutions, respectively. Recent results in the literature are extended and significantly improved.
  相似文献   

7.
If B is a compact connected Lie group and N a finite central subgroup, let \({f\colon B\to B/N}\) be the associated covering morphism. The mapping cylinder \({{\mathrm{MC}}(f)}\) is a compact monoid which we call a covering space semigroup. A prominent example is the classical Möbius band \({\mathbb{M}^2}\). An (L)-semigroup is a compact n-manifold X with connected boundary B together with a monoid structure on X such that B is a subsemigroup of X. Every covering space semigroup with \({|N|=2}\) is an (L)-semigroup, and every nonorientable (L)-semigroup is a covering space semigroup. Here \({\mathbb{M}^2}\) is a guiding example. In general, a covering space semigroup X is not a manifold but does have a well-defined manifold boundary. The study of covering space semigroups leads to the following Theorem. Let B be a compact connected Lie group with a central circle group as a direct factor. Then there exist infinitely many pairwise nonisomorphic covering space semigroups with boundary B, and each such semigroup is a retract of a compact connected Lie group.  相似文献   

8.
The Gamma semigroup with parameter \(b>0\) on \(L^p(\mathbb R^+)\) is defined by
$$\begin{aligned} W_b(t)f(x)=\frac{1}{\Gamma (t)}\int _0^x(x-y)^{t-1}e^{-b(x-y)}f(y)\,dy. \end{aligned}$$
Let S denote the multiplication operator \(f(x)\rightarrow xf(x)\) with maximal domain D(S) in \(L^p(\mathbb R^+)\). The bounded operator V on \(L^p(\mathbb R^+)\) is S-Volterra if D(S) is V-invariant and \([S,V]=V^2\) on D(S). For \(1<p<\infty \), we characterize the Gamma semigroup as the unique regular semigroup \(V(\cdot )\) on \(L^p(\mathbb R^+)\) with imaginary type less than \(\pi \), such that V(1) is S-Volterra and \(V(1)u^b=Su^b\), where \(u^b(x):=e^{-bx}\).
  相似文献   

9.
Let \({{\{ V(t) | \ t \in [0 , \infty) \}}}\) be a one-parameter strongly continuous semigroup of contractions on a separable Hilbert space and let V(?t) : = V*(t) for \({t \in [0, \infty)}\). It is shown that if V(t) is a partial isometry for all \({t \in [-t_0 , t_0], t_0 > 0}\), then the pointwise two-sided derivative of V(t) exists on a dense domain of vectors. This derivative B is necessarily a densely defined symmetric operator. This result can be viewed as a generalization of Stone’s theorem for one-parameter strongly continuous unitary groups, and is used to establish sufficient conditions for a self-adjoint operator on a Hilbert space \({\mathcal{K}}\) to have a symmetric restriction to a dense linear manifold of a closed subspace \({\mathcal H \subset \mathcal K}\). A large class of examples of such semigroups consisting of the compression of the unitary group generated by the operator of multiplication by the independent variable in \({\mathcal {K} := \oplus _{i=1} ^n L^2 (\mathbb {R})}\) to certain model subspaces of the Hardy space of n?compenent vector valued functions which are analytic in the upper half plane is presented.  相似文献   

10.
Let B be an Archimedean reduced f-ring. A positive element \({\omega}\) in B is said to satisfy the property \({(\ast)}\) if for every f-ring A with identity e and every \({\ell}\)-group homomorphism \({\gamma : A \rightarrow B}\) with \({\gamma(e) = \omega}\), there exists a unique \({\ell}\)-ring homomorphism \({\rho: B \rightarrow B}\) such that \({\gamma = \omega \rho}\) and \({\rho(e)^{\perp \perp} = \omega^{\perp \perp}}\). Boulabiar and Hager proved that any (positive) von Neumann regular element in B satisfies the property \({(\ast)}\) and proved that the converse holds in the C(X)-case. In this regard, they asked about this converse in the general case. Our main purpose in this note is to prove, via a counter-example, that the converse in question fails in general. In addition, we shall take the opportunity to extend the direct result obtained by Boulabiar and Hager, and to get the C(X)-case we were talking about in an easier way.  相似文献   

11.
An interassociate of a semigroup \((S,\cdot )\) is a semigroup \((S, *)\) such that for all \(a, b, c \in S\), \(a\cdot (b*c)=(a\cdot b) *c\) and \(a*(b\cdot c)=(a*b) \cdot c\). We investigate the bicyclic semigroup C and its interassociates. In particular, if p and q are the generators of the bicyclic semigroup and m and n are fixed nonnegative integers, the operation \(a*_{m,n} b= aq^mp^n b\) is known to be an interassociate. We show that for distinct pairs (mn) and (st), the interassociates \((C, *_{m,n})\) and \((C, *_{s,t})\) are not isomorphic. We also generalize a result regarding homomorphisms on C to homomorphisms on its interassociates.  相似文献   

12.
For the extended Dirichlet space \(\mathcal {F}_{e}\) of a general irreducible recurrent regular Dirichlet form \((\mathcal {E},\mathcal {F})\) on L 2(E;m), we consider the family \(\mathbb {G}(\mathcal {E})=\{X_{u};u\in \mathcal {F}_{e}\}\) of centered Gaussian random variables defined on a probability space \(({\Omega }, \mathcal {B}, \mathbb {P})\) indexed by the elements of \(\mathcal {F}_{e}\) and possessing the Dirichlet form \(\mathcal {E}\) as its covariance. We formulate the Markov property of the Gaussian field \(\mathbb {G}(\mathcal {E})\) by associating with each set A ? E the sub-σ-field σ(A) of \(\mathcal {B}\) generated by X u for every \(u\in \mathcal {F}_{e}\) whose spectrum s(u) is contained in A. Under a mild absolute continuity condition on the transition function of the Hunt process associated with \((\mathcal {E}, \mathcal {F})\), we prove the equivalence of the Markov property of \(\mathbb {G}(\mathcal {E})\) and the local property of \((\mathcal {E},\mathcal {F})\). One of the key ingredients in the proof is in that we construct potentials of finite signed measures of zero total mass and show that, for any Borel set B with m(B) >?0, any function \(u\in \mathcal {F}_{e}\) with s(u) ? B can be approximated by a sequence of potentials of measures supported by B.  相似文献   

13.
A pure Mendelsohn triple system of order v, denoted by PMTS(v), is a pair \((X,\mathcal {B})\) where X is a v-set and \(\mathcal {B}\) is a collection of cyclic triples on X such that every ordered pair of X belongs to exactly one triple of \(\mathcal {B}\) and if \(\langle a,b,c\rangle \in \mathcal {B}\) implies \(\langle c,b,a\rangle \notin \mathcal {B}\). An overlarge set of PMTS(v), denoted by OLPMTS(v), is a collection \(\{(Y{\setminus }\{y_i\},{\mathcal {A}}_i)\}_i\), where Y is a \((v+1)\)-set, \(y_i\in Y\), each \((Y{\setminus }\{y_i\},{\mathcal {A}}_i)\) is a PMTS(v) and these \({\mathcal {A}}_i\)s form a partition of all cyclic triples on Y. It is shown in [3] that there exists an OLPMTS(v) for \(v\equiv 1,3\) (mod 6), \(v>3\), or \(v \equiv 0,4\) (mod 12). In this paper, we shall discuss the existence problem of OLPMTS(v)s for \(v\equiv 6,10\) (mod 12) and get the following conclusion: there exists an OLPMTS(v) if and only if \(v\equiv 0,1\) (mod 3), \(v>3\) and \(v\ne 6\).  相似文献   

14.
Generalizing Cooper’s method of quantifier elimination for Presburger arithmetic, we give a new proof that all parametric Presburger families \(\{S_t : t \in \mathbb {N}\}\) [as defined by Woods (Electron J Comb 21:P21, 2014)] are definable by formulas with polynomially bounded quantifiers in an expanded language with predicates for divisibility by f(t) for every polynomial \(f \in \mathbb {Z}[t]\). In fact, this quantifier bounding method works more generally in expansions of Presburger arithmetic by multiplication by scalars \(\{\alpha (t): \alpha \in R, t \in X\}\) where R is any ring of functions from X into \(\mathbb {Z}\).  相似文献   

15.
Let \({\mathcal{L}(X)}\) be the algebra of all bounded operators on a Banach space X. \({\theta:G\rightarrow \mathcal{L}(X)}\) denotes a strongly continuous representation of a topological abelian group G on X. Set \({\sigma^1(\theta(g)):=\{\lambda/|\lambda|,\lambda\in\sigma(\theta(g))\}}\), where σ(θ(g)) is the spectrum of θ(g) and \({\Sigma:=\{g\in G/\enskip\text{there is no} \enskip P\in \mathcal{P}/P\subseteq \sigma^1(\theta(g))\}}\), where \({\mathcal{P}}\) is the set of regular polygons of \({\mathbb{T}}\) (we call polygon in \({\mathbb{T}}\) the image by a rotation of a closed subgroup of \({\mathbb{T}}\), the unit circle of \({\mathbb{C}}\)). We prove here that if G is a locally compact and second countable abelian group, then θ is uniformly continuous if and only if Σ is non-meager.  相似文献   

16.
We consider generalized Morrey spaces \({\mathcal{L}^{p(\cdot),\varphi(\cdot)}( X )}\) on quasi-metric measure spaces \({X,d,\mu}\), in general unbounded, with variable exponent p(x) and a general function \({\varphi(x,r)}\) defining the Morrey-type norm. No linear structure of the underlying space X is assumed. The admission of unbounded X generates problems known in variable exponent analysis. We prove the boundedness results for maximal operator known earlier only for the case of bounded sets X. The conditions for the boundedness are given in terms of the so called supremal inequalities imposed on the function \({\varphi(x,r)}\), which are weaker than Zygmund-type integral inequalities often used for characterization of admissible functions \({\varphi}\). Our conditions do not suppose any assumption on monotonicity of \({\varphi(x,r)}\) in r.  相似文献   

17.
Let \({\{\phi_s\}_{s\in S}}\) be a commutative semigroup of completely positive, contractive, and weak*-continuous linear maps acting on a von Neumann algebra N. Assume there exists a semigroup \({\{\alpha_s\}_{s\in S}}\) of weak*-continuous *-endomorphisms of some larger von Neumann algebra \({M\supset N}\) and a projection \({p\in M}\) with N = pMp such that α s (1 ? p) ≤ 1 ? p for every \({s\in S}\) and \({\phi_s(y)=p\alpha_s(y)p}\) for all \({y\in N}\). If \({\inf_{s \in S}\alpha_s(1-p)=0}\) then we show that the map \({E:M\to N}\) defined by E(x) = pxp for \({x\in M}\) induces a complete isometry between the fixed point spaces of \({\{\alpha_s\}_{s\in S}}\) and \({\{\phi_s\}_{s\in S}}\).  相似文献   

18.
Assume that we observe a stationary Gaussian process X(t), \({t \in [-r, T]}\) , which satisfies the affine stochastic delay differential equation
$d X(t) = \int\limits_{[-r,0]}X(t+u)\, a_\vartheta (du)\,dt +dW(t), \quad t\ge 0,$
where W(t), t ≥ 0, is a standard Wiener process independent of X(t), \({t\in [-r, 0]}\) , and \({a_\vartheta}\) is a finite signed measure on [?r, 0], \({\vartheta\in\Theta}\) . The parameter \({\vartheta}\) is unknown and has to be estimated based on the observation. In this paper we consider the case where \({\Theta=(\vartheta_0,\vartheta_1)}\) , \({-\infty\,<\,\vartheta_0 <0 \,<\,\vartheta_1\,<\,\infty}\) , and the measures \({a_\vartheta}\) are of the form
$a_\vartheta = a+b_\vartheta-b,$
where a and b are finite signed measure on [?r, 0] and \({b_\vartheta}\) is the translate of b by \({\vartheta}\) . We study the limit behaviour of the normalized likelihoods
$Z_{T,\vartheta}(u) = \frac{dP_T^{\vartheta+\delta_T u}}{dP_T^\vartheta}$
as T→ ∞, where \({P_T^\vartheta}\) is the distribution of the observation if the true value of the parameter is \({\vartheta}\) . A necessary and sufficient condition for the existence of a rescaling function δ T such that \({Z_{T,\vartheta}(u)}\) converges in distribution to an appropriate nondegenerate limiting function \({Z_{\vartheta}(u)}\) is found. It turns out that then the limiting function \({Z_{\vartheta}(u)}\) is of the form
$Z_\vartheta(u)=\exp\left(B^H(u) - E[B^H(u)]^2/2\right),$
where \({H\in[1/2,1]}\) and B H (u), \({u\in\mathbb{R}}\) , is a fractional Brownian motion with index H, and δ T  = T ?1/(2H) ?(T) with a slowly varying function ?. Every \({H\in[1/2,1]}\) may occur in this framework. As a consequence, the asymptotic behaviour of maximum likelihood and Bayes estimators is found.
  相似文献   

19.
For the stationary storage process {Q(t), t ≥ 0}, with \( Q(t)=\sup _{s\ge t}\left (X(s)-X(t)-c(s-t)^{\beta }\right ),\) where {X(t), t ≥ 0} is a centered Gaussian process with stationary increments, c > 0 and β > 0 is chosen such that Q(t) is finite a.s., we derive exact asymptotics of \(\mathbb {P}\left (\sup _{t\in [0,T_{u}]} Q(t)>u \right )\) and \(\mathbb {P}\left (\inf _{t\in [0,T_{u}]} Q(t)>u \right )\), as \(u\rightarrow \infty \). As a by-product we find conditions under which strong Piterbarg property holds.  相似文献   

20.
Let X,Y be reflexive strictly convex Banach spaces,let T,δT:X→Y be bounded linear operators with closed range R(T).Put T=T+δT.In this paper,by using the concept of quasiadditivity and the so called generalized Neumman lemma,we will give some error estimates of the bounds of |T~M|.By using a relation between the concepts of the reduced minimum module and the gap of two subspaces,some new existence characterization of the Moore-Penrose metric generalized inverse T~M of the perturbed operator T will be also given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号