首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The scope of a number of plasma spectrochemical methods for the determination of the main components and impurities in ceramic powders is described. These methods meet the requirements for the analytical characterization of new structural and functional ceramics for modern industrial applications and electronic devices. For ceramic powders, spectrochemical analysis with direct methods as well as analysis subsequent to sample dissolution are discussed. Fusion is a powerful method for the dissolution of ZrO2 ceramic powders, provided the fluxes are pure enough. For determinations in Al2O3, SiC and ZrO2, it will be shown that ICP-MS is very useful. This is especially true for trace analysis after matrix removal. The latter can easily be performed on-line in the case of the analysis of Al2O3 powders. For direct analysis of ceramic powders, the direct insertion of samples into the plasma, spark and arc ablation, laser ablation, electrothermal vaporization and slurry nebulization are discussed. Particular attention is given to the direct analysis of ceramics in powder form (Al2O3, SiC, Si3N4, B4, WC) using ICP-OES with slurry nebulization as well as with direct sample insertion (DSI) and with electrothermal vaporization (ETV). For the two latter methods, the use of chemical modifiers for volatile compound formation will be shown to be of great importance, and its features will be explained using thermochemical considerations.  相似文献   

2.
The scope of a number of plasma spectrochemical methods for the determination of the main components and impurities in ceramic powders is described. These methods meet the requirements for the analytical characterization of new structural and functional ceramics for modern industrial applications and electronic devices. For ceramic powders, spectrochemical analysis with direct methods as well as analysis subsequent to sample dissolution are discussed. Fusion is a powerful method for the dissolution of ZrO2 ceramic powders, provided the fluxes are pure enough. For determinations in Al2O3, SiC and ZrO2, it will be shown that ICP-MS is very useful. This is especially true for trace analysis after matrix removal. The latter can easily be performed on-line in the case of the analysis of Al2O3 powders. For direct analysis of ceramic powders, the direct insertion of samples into the plasma, spark and arc ablation, laser ablation, electrothermal vaporization and slurry nebulization are discussed. Particular attention is given to the direct analysis of ceramics in powder form (Al2O3, SiC, Si3N4, B4, WC) using ICP-OES with slurry nebulization as well as with direct sample insertion (DSI) and with electrothermal vaporization (ETV). For the two latter methods, the use of chemical modifiers for volatile compound formation will be shown to be of great importance, and its features will be explained using thermochemical considerations. Received: 18 February 1998 / Revised: 13 May 1998 / Accepted: 9 June 1998  相似文献   

3.
Analysis of advanced ceramics and their basic products   总被引:1,自引:0,他引:1  
Summary A review on the analysis of the most important ceramic materials and their basic substances is given. The importance of minor and trace elements in the bulk as well as their distribution on the microscale in both classes of substances is discussed by the example of Al2O3, AlN, TiO2, Si3N4, SiO2, SiC, Y2O3, ZrO2-based and some other ceramics and of their basic substances. The state-of-the-art and trends of development in modern atomic spectrometric methods for bulk analysis of the basic substances subsequent to sample dissolution, such as plasma emission and mass spectrometry, but also of direct methods such as slurry nebulization for plasma spectrometry, inorganic mass spectrometry and X-ray spectrometry are discussed. Further, first approaches for the in-depth analysis of powders and trends in direct methods for compact ceramics based on laser evaporation as well as on electron and ion probe techniques are presented. The latter are illustrated with selected examples from the literature.
Analyse von modernen keramischen Materialien und ihren Grundstoffen

Dedicated to Prof. Dr. R. Neeb on the occasion of his 60th birthday  相似文献   

4.
A rapid semiquantitative method is described based on measurement of the time required for decolorization of spotreactions on filter paper strips by suitable reagents, This very simple method yields results which are accurate to ± 10%. The method has been verified for several ions (Ag+, Pb2+, JO3-,Cu2+, CrO42-). The utility of this method for the characterization and differentiation of filter papers is indicated.  相似文献   

5.
Titanium dioxide (TiO2) is a promising anode material for sodium-ion batteries (SIBs) due to its low cost, natural abundance, nontoxicity, and excellent electrochemical stability. Oxygen vacancies, the most common point defects in TiO2, can dramatically influence the physical and chemical properties of TiO2, including band structure, crystal structure and adsorption properties. Recent studies have demonstrated that oxygen-deficient TiO2 can significantly enhance sodium storage performance. Considering the importance of oxygen vacancies in modifying the properties of TiO2, the structural properties, common synthesis strategies, characterization techniques, as well as the contribution of oxygen-deficient TiO2 on initial Coulombic efficiency, cyclic stability, rate performance for sodium storage are comprehensively described in this review. Finally, some perspectives on the challenge and future opportunities for the development of oxygen-deficient TiO2 are proposed.  相似文献   

6.
Efforts made on the development of a novel, simple, cost-effective, and efficient approach to fabricate a copper catalyst immobilized on mesoporous poly (acrylic acid)/poly (vinyl chloride) hybrid fibers (CuII@PAA/PVC) for versatile catalytic applications in A3, KA2, and decarboxylative A3 couplings has been described in this present work. The characterization of the mesoporous hybrid fibers was well performed by BET, FTIR, SEM, EDX, XPS, and TGA techniques. The pore structure and surface area were calculated by using BET measurement analysis. The obtained mesoporous CuII@PAA/PVC fibers exert high catalytic performance in the synthesis of propargylamines via one-pot A3, KA2, and decarboxylative A3 reactions over a series of substrates without employing expensive ligands or inert atmosphere. The active Cu2+ species chelating with carboxylate groups in PAA/PVC hybrid fibers plays a key role in the catalysis. Meanwhile, the unique mesoporous structure and fiber morphology facilitate a better mass transfer and enlarge its contact area with substrates in the course of a reaction. Moreover, the Cu2+–carboxylate chelation could suppress the leaching of active Cu2+ species from the catalyst and thus lead to the catalyst has excellent performance and good durability as well as reusability.  相似文献   

7.
The selected sample for this study represents a piece of pavement ceramics from a private collection. The ceramic (approximately XVIIIth century) comes from Campania region, Naples province. A chemical, mineralogical and morphological characterization of a Campagna ceramic piece received from a particular collection has been performed. Inductively coupled plasma-atomic emission spectroscopy—(ICP-AES) was used for the determination of Al2O3, CaO, Fe2O3, K2O, MgO, MnO, Na2O, and TiO2 as major constituents and Cu, Cr, Ni, Pb, and Zn as minor and trace selected elements. There is a very important characterization method used for the control of the reaction process and of the properties of the materials obtained. Physical and mineralogical analyses were made by using the thermal behavior (thermogravimetric analysis (TG) and differential thermal analysis (DTG)) and X-ray diffraction spectrometry for the mineralogical composition. The results of these analyses allow the establishment of conclusions about several aspects of their manufacture, the origin of the raw materials and their provenance (local or imported). They provide information supporting certain archeological hypothesis. The performed analysis revealed some very interesting characteristics: lower amount of silica and increased concentration of alumina, the presence of calcium in relatively low concentration (Ca-poor ceramic) and a mineralogical composition.  相似文献   

8.
Metal oxide affinity chromatography has been one of the approaches for specific enrichment of phosphopeptides from complex samples, based on specific phosphopeptide adsorption forming bidentate chelates between phosphate anions and the surface of a metal oxide, such as TiO2, ZrO2, Fe2O3, and Al2O3. Due to convective mass transfer, flow-independent resolution and high dynamic binding capacity, monolith chromatographic supports have become important in studies where high resolution and selectivity are required. Here, we report the first synthesis and characterization of immobilisation of rutile TiO2 nanoparticles onto organic monolithic chromatographic support (CIM-OH-TiO2). We demonstrate the specificity of CIM-OH-TiO2 column for enrichment of phosphopeptides by studying chromatographic separation of model phosphorylated and nonphosphorylated peptides as well as proving the phosphopeptide enrichment of digested bovine α-casein. The work described here opens the possibility for a faster, more selective enrichment of phosphopeptides from biological samples that will enable future advances in studying protein phosphorylation.  相似文献   

9.
Perovskite oxide ceramics have found wide applications in energy storage capacitors, electromechanical transducers, and infrared imaging devices due to their unique dielectric, piezoelectric, pyroelectric, and ferroelectric properties. These functional properties are intimately related to the complex displacive phase transitions that readily occur. In this study, these solid–solid phase transitions are characterized with dielectric measurements, dynamic mechanical analysis, thermomechanical analysis, and differential scanning calorimetry in an antiferroelectric lead-containing composition, Pb0.99Nb0.02[(Zr0.57Sn0.43)0.92Ti0.08]0.98O3, and in a relaxor ferrielectric lead-free composition, (Bi1/2Na1/2)0.93Ba0.07TiO3. The (Bi1/2Na1/2)0.93Ba0.07TiO3 ceramic develops strong piezoelectricity through electric field-induced phase transitions during the poling process. The combined thermal analysis techniques clearly reveal the differences in unpoled and poled ceramics.  相似文献   

10.
Summary The use of high-performance liquid chromatography (HPLC) for the characterization of the adducts formed by the32P-postlabeling of DNA is described. Adducts formed from the reaction of DNA with small molecules are characterized as deoxyribonucleoside-5′-monophosphates. Adducts formed from the reaction of DNA with larger molecules are characterized as 3′,5′-bisphosphates. In either case, good separations are obtained for adducts, other than methyl, by conventional reversed-phase chromatography using a C18 column. Ion-exchange chromatography can be used in selected circumstances where reversed-phase techniques are not successful. Using sample concentration techniques, sensitivities are achievable which make this technique applicable toin vivo situations.  相似文献   

11.
Chalcopyrite CuFeS2, a semiconductor with applications in chemical sector and energy conversion engineering, was synthetized in a planetary mill from elemental precursors. The synthesis is environmentally friendly, waste-free and inexpensive. The synthesized nano-powders were characterized by XRD, SEM, EDX, BET and UV/Vis techniques, tests of chemical reactivity and, namely, thermoelectric performance of sintered ceramics followed. The crystallite size of ∼13 nm and the strain of ∼17 were calculated for CuFeS2 powders milled for 60, 120, 180 and 240 min, respectively. The evolution of characteristic band gaps, Eg, and the rate constant of leaching, k, of nano-powders are corroborated by the universal evolution of the parameter SBET/X (SBET-specific surface area, X-crystallinity) introduced for complex characterization of mechanochemically activated solids in various fields such as chemical engineering and/or energy conversion. The focus on non-doped semiconducting CuFeS2 enabled to assess the role of impurities, which critically and often negatively influence the thermoelectric properties.  相似文献   

12.
通过对LixAlx-1Ge3-x(PO4)3(x=1.1~1.9)锂离子导电玻璃的差示量热扫描(DSC)数据,结合XRD及其Rietveld精修、FESEM和交流阻抗等测试方法,研究了该系微晶玻璃的物相组成、主晶相晶胞参数变化情况、微观结构形貌、锂离子电导率和电化学窗口等。结果表明:LixAlx-1Ge3-x(PO4)3(x=1.1~1.9)锂离子导电微晶玻璃析出导电主晶相为LiGe2(PO4)3。当x=1.5时,由于导电主晶相LiGe2(PO4)3晶粒充分长大、分布均匀,晶界清晰,LAGP导电微晶玻璃的室温电导率最高(可达5.3×10-4 S.cm-1),电化学窗口为7.2V,可以满足全固态锂离子电池对电解质高室温电导率和宽电化学窗口的应用要求。  相似文献   

13.
The paper reviews the studies of sol-gel produced nanocrystalline -Al2O3 and cubic Y2O3 doped with RE3+ and TM3+ ions. The effects of spatial confinement (on nanometer scale) in optical properties of sol-gel produced insulating nanocrystalline oxide materials doped with rare earth and transition metal ions are discussed. The experimental studies showed that in insulators these effects are mostly connected with the changes in the vibrational spectrum and the increased role of the surface in nanocrystals. The transformations between the crystalline forms of Al2O3 and the properties of doped corundum ceramics are studied. The methods of sol-gel synthesis of highly dispersed nanocrystalline -Al2O3 and cubic Y2O3 doped with RE3+ and TM3+ ions in wide range of concentrations are described. It is shown that optical techniques are useful for characterization of sol-gel produced materials.  相似文献   

14.
A practical method for the direct hydroxylation of benzene to phenol catalyzed by supported vanadium-substituted polyoxometalates using H2O2 as an oxidant is described. Three vanadium-doped polyoxometalate Na2H3PMo10V2O40·xH2O catalysts were designed and prepared through support on graphitic carbon nitride (g-C3N4), montmorillonite, and activated carbon and named as CN-PMoV2, M-PMoV2, and C-PMoV2, respectively. Their characterization was elucidated through the Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), inductively coupled plasma-atomic emission spectrometry (ICP-AES) and scanning electron microscopy (SEM). This heterogeneous catalyst demonstrated promising activity in the hydroxylation of benzene to phenol with H2O2. Especially, CN-PMoV2 catalyst was highly active and selective even under mild conditions. Moreover, CN-PMoV2 catalyst still has a certain catalytic effect even after three instances of repeated use.  相似文献   

15.
Chronic exposure to uranium compounds led to the development of a methodology in order to characterize those compounds. This methodology, based on the recommendation of the I.C.R.P,1 involves three main steps: the measurement of the uranium concentration and the particle size distribution at workstations; the characterization of the industrial compound, i.e. its physico-chemical properties; and the study of in-vitro solubility using chemical and cellular tests. Different methods for uranium analysis are presented. Results and comments on UF4, UO3, U3O8, UO2 and U+UO2 are given.  相似文献   

16.
In this paper, we describe a validation procedure for chemical fractionation analysis of elements (Al, As, Ba, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, S, Sb, Si, Sr, Ti and V) and soluble ions (Cl, NO3, SO42−, Na+, NH4+, Mg2+, Ca2+) in suspended particulate matter (PM). The procedure applies three distinct measurement techniques (XRF, IC and ICP-OES) to the analysis of individual samples. The techniques used generate different outputs at different stages in the procedure. This makes it possible to identify the contributions of specific parameters to measurement uncertainty. On this basis, we propose a scheme for controlling the analytical quality of data from individual samples in which inter-technique comparisons is used in the same way many analytical methods use surrogates. We apply this scheme to about 310 samples of PM10 and PM2.5 identifying and assessing the main factors contributing to measurement uncertainty. This procedure successfully resolved a number of difficulties frequently encountered during the analysis of PM, including lack of appropriate reference materials and the low reliability of alternative techniques of quality control. The results demonstrate the critical importance of sample treatment prior to destructive analysis by IC and ICP.  相似文献   

17.
In this work, the extraction, structural analysis, and identification as well as antimicrobial, anti‐adhesive, and antibiofilm activities of lipopeptides produced by Enterobacter cloacae C3 strain were studied. A combination of chromatographic and spectroscopic techniques offers opportunities for a better characterization of the biosurfactant structure. Thin layer chromatography (TLC) and HPLC for amino acid composition determination are used. Efficient spectroscopic techniques have been utilized for investigations on the biochemical structure of biosurfactants, such as Fourier transform infrared (FT‐IR) spectroscopy and mass spectrometry analysis. This is the first work describing the production of different isoforms belonging to kurstakin and surfactin families by E cloacae strain. Three kurstakin homologues differing by the fatty acid chain length from C10 to C12 were detected. The spectrum of lipopeptides belonging to surfactin family contains various isoforms differing by the fatty acid chain length as well as the amino acids at positions four and seven. Lipopeptide C3 extract exhibited important antibacterial activity against Gram‐positive and Gram‐negative bacteria, antifungal activity, and interesting anti‐adhesive and disruptive properties against biofilm formation by human pathogenic bacterial strains: Salmonella typhimurium, Klebsiella pneumoniae, Staphylococcus aureus, Bacillus cereus, and Candida albicans.  相似文献   

18.
采用廉价低毒性的环己胺(CHA)作为有机模板剂,并合理添加少量MCM-49沸石晶种,在静态水热条件下成功合成了高纯度MCM-49沸石.研究了起始凝胶组成(如Al2O3/SiO2,H2O/SiO2,CHA/SiO2,晶种/SiO2,Na2O/SiO2)、晶化温度和时间等因素对合成MCM-49沸石的影响.通过XRD、SEM、N2吸附、固体27Al和29Si MAS NMR等手段表征产物,结果表明合成的MCM-49沸石具有良好的结晶度、均匀的晶体尺寸、高比表面积和纯的四配位Al3+物种.热重差热分析(TG-DTA)和固体13C MAS NMR表征结果证实CHA是作为模板剂填充在沸石产物的孔道内.这种合成MCM-49的方法具有廉价和低毒性的特点,对其产业应用有潜在的重要价值.  相似文献   

19.
A survey is given of applications of Raman spectroscopy in materials characterization. The following topics are covered: Analytical characterization of glasses in the system PbO-B2O3 and of glasses and ceramics in the system SrO-B2O3-Al2O3-TiO2; investigation and discussion of the so-called Boson peak in the Raman spectra of glasses; Raman spectra obtained with a microscope attachment of carbonaceous materials to study the orientation of graphite planes in films and fibres.  相似文献   

20.
The methods for preparation of highly transparent optical ceramics based on simple and complex fluoride compounds of elements of the first, second, and third Group in the Periodical system are considered. The use of precursors as nanopowders and processes of their self-assembling on heating results in maximally homogeneous, transparent, and mechanically strong ceramics. The resulting calcium fluoride ceramics possess optical losses of 10−2–10−3 cm−1 at 1.06 μm and shock resistance characterized by the fracture toughness K 1C = 4.7±0.3 MPa m1/2 (for comparison, for a calcium fluoride single crystal K 1C = 1.5±0.15 MPa m1/2). Regularities of the chemistry of fluoride nanopowders were considered in comparison with the oxide nanopowders: the fluorides are prone to hydrolysis, and powder nanoparticles precipitated from aqueous solutions have complex and heterogeneous (over the volume) chemical composition. The spectral luminescence properties of the ceramics activated by rare-earth metals (Ce3+, Nd3+, Er3+, Yb3+) or containing active color centers are presented. The generation properties of the lithium fluoride ceramics with the color centers and the ternary Ca-Sr-Yb fluoride during diode laser pumping are describe Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 863–872, May, 2008.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号