首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
For a pair of vertices x and y in a graph G, we denote by dG(x,y) the distance between x and y in G. We call x a boundary vertex of y if x and y belong to the same component and dG(y,v)?dG(y,x) for each neighbor v of x in G. A boundary vertex of some vertex is simply called a boundary vertex, and the set of boundary vertices in G is called the boundary of G, and is denoted by B(G).In this paper, we investigate graphs with a small boundary. Since a pair of farthest vertices are boundary vertices, |B(G)|?2 for every connected graph G of order at least two. We characterize the graphs with boundary of order at most three. We cannot give a characterization of graphs with exactly four boundary vertices, but we prove that such graphs have minimum degree at most six. Finally, we give an upper bound to the minimum degree of a connected graph G in terms of |B(G)|.  相似文献   

2.
F.S. Roberts defined the boxicity of a graph G as the smallest positive integer n for which there exists a function F assigning to each vertex x?G a sequence F(x)(1),F(x)(2),…, F(x)(n) of closed intervals of R so that distinct vertices x and y are adjacent in G if and only if F(x)(i)∩F(y)(i)≠? fori = 1, 2, 3, …, n. Roberts then proved that if G is a graph having 2n + 1 vertices, thentheboxicityofGisatmostn. In this paper, we provide an explicit characterization of this inequality by determining for each n ? 1 the minimum collection Cn of graphs so that a graph G having 2n + 1 vertices has boxicity n if and only if it contains a graph from Cn as an induced subgraph. We also discuss combinatorial connections with analogous characterization problems for rectangle graphs, circular arc graphs, and partially ordered sets.  相似文献   

3.
We consider two Gaussian measures P1 and P2 on (C(G), B) with zero expectations and covariance functions R1(x, y) and R2(x, y) respectively, where Rν(x, y) is the Green's function of the Dirichlet problem for some uniformly strongly elliptic differential operator A(ν) of order 2m, m ≥ [d2] + 1, on a bounded domain G in Rd (ν = 1, 2). It is shown that if the order of A(2) ? A(1) is at most 2m ? [d2] ? 1, then P1 and P2 are equivalent, while if the order is greater than 2m ? [d2] ? 1, then P1 and P2 are not always equivalent.  相似文献   

4.
Let A be an n × n matrix; write A = H+iK, where i2=—1 and H and K are Hermitian. Let f(x,y,z) = det(zI?xH?yK). We first show that a pair of matrices over an algebraically closed field, which satisfy quadratic polynomials, can be put into block, upper triangular form, with diagonal blocks of size 1×1 or 2×2, via a simultaneous similarity. This is used to prove that if f(x,y,z) = [g(x,y,z)]n2, where g has degree 2, then for some unitary matrix U, the matrix U1AU is the direct sum of n2 copies of a 2×2 matrix A1, where A1 is determined, up to unitary similarity, by the polynomial g(x,y,z). We use the connection between f(x,y,z) and the numerical range of A to investigate the case where f(x,y,z) has the form (z?αax? βy)r[g(x,y,z)]s, where g(x,y,z) is irreducible of degree 2.  相似文献   

5.
A graph Γ is distance-transitive if for all vertices u, v, x, y such that d(u, v) = d(x, y) there is an automorphism h of Γ such that uh = x, vh = y. We show how to find a bound for the diameter of a bipartite distance-transitive graph given a bound for the order |Gα| of the stabilizer of a vertex.  相似文献   

6.
Let xi ≥ 0, yi ≥ 0 for i = 1,…, n; and let aj(x) be the elementary symmetric function of n variables given by aj(x) = ∑1 ≤ ii < … <ijnxiixij. Define the partical ordering x <y if aj(x) ≤ aj(y), j = 1,… n. We show that x $?y ? xα$?yα, 0 $?α ≤ 1, where {xα}i = xαi. We also give a necessary and sufficient condition on a function f(t) such that x <y ? f(x) <f(y). Both results depend crucially on the following: If x <y there exists a piecewise differentiable path z(t), with zi(t) ≥ 0, such that z(0) = x, z(1) = y, and z(s) <z(t) if 0 ≤ st ≤ 1.  相似文献   

7.
The boolean distance between two points x and y of a connected graph G is defined as the set of all points on all paths joining x and y in G (Ø if x = y). It is determined in terms of the block-cutpoint graph of G, and shown to satisfy the triangle inequality b(x,y)? b(x, z)∪b(z,y). We denote by B(G) the collection of distinct boolean distances of G and by M(G) the multiset of the distances together with the number of occurrences of each of them. Then B(G) = 1+(b+12) where b is the number of blocks of G. A combinatorial characterization is given for B(T) where T is a tree. Finally, G is reconstructible from M(G) if and only if every block of G is a line or a triangle.  相似文献   

8.
When we wish to compute lower bounds for the chromatic number χ(G) of a graph G, it is of interest to know something about the ‘chromatic forcing number’ fχ(G), which is defined to be the least number of vertices in a subgraph H of G such that χ(H) = χ(G). We show here that for random graphs Gn,p with n vertices, fχ(Gn,p) is almost surely at least (12?ε)n, despite say the fact that the largest complete subgraph of Gn,p has only about log n vertices.  相似文献   

9.
Let G denote the complement of a graph G, and x(G), β1(G), β4(G), α0(G), α1(G) denote respectively the chromatic number, line-independence number, point-independence number, point-covering number, line-covering number of G, Nordhaus and Gaddum showed that for any graph G of order p, {2√p} ? x(G) + x(G) ? p + 1 and p ? x(G)·x(G) ? [(12(p + 1))2]. Recently Chartrand and Schuster have given the corresponding inequalities for the independence numbers of any graph G. However, combining their result with Gallai's well known formula β1(G) + α1(G) = ?, one is not deduce the analogous bounds for the line-covering numbers of G andG, since Gallai's formula holds only if G contains no isolated vertex. The purpose of this note is to improve the results of Chartland and Schuster for line-independence numbers for graphs where both G andG contain no isolated vertices and thereby allowing us to use Gallai's formula to get the corresponding bounds for the line-covering numbers of G.  相似文献   

10.
A graph G is bridged if every cycle C of length at least 4 has vertices x,y such that dG(x,y) < dC(x,y). A cycle C is isometric if dG(x,y) = dC(x,y) for all x,yV(C). We show that every graph contractible to a graph with girth g has an isometric cycle of length at least g. We use this to show that every minimal cutset S in a bridged graph G induces a connected subgraph. We introduce a “crowning” construction to enlarge bridged graphs. We use this to construct examples showing that for every connected simple graph H with girth at least 6 (including trees), there exists a bridged graph G such that G has a unique minimum cutset S and that G[S] = H. This provides counterexamples to Hahn's conjecture that dG(u,v) ≤ 2 when u and v lie in a minimum cutset in a bridged graph G. We also study the convexity of cutsets in bridged graphs. © 2003 Wiley Periodicals, Inc. J Graph Theory 43: 161–170, 2003  相似文献   

11.
If k is a perfect field of characteristic p ≠ 0 and k(x) is the rational function field over k, it is possible to construct cyclic extensions Kn over k(x) such that [K : k(x)] = pn using the concept of Witt vectors. This is accomplished in the following way; if [β1, β2,…, βn] is a Witt vector over k(x) = K0, then the Witt equation yp ? y = β generates a tower of extensions through Ki = Ki?1(yi) where y = [y1, y2,…, yn]. In this paper, it is shown that there exists an alternate method of generating this tower which lends itself better for further constructions in Kn. This alternate generation has the form Ki = Ki?1(yi); yip ? yi = Bi, where, as a divisor in Ki?1, Bi has the form (Bi) = qΠpjλj. In this form q is prime to Πpjλj and each λj is positive and prime to p. As an application of this, the alternate generation is used to construct a lower-triangular form of the Hasse-Witt matrix of such a field Kn over an algebraically closed field of constants.  相似文献   

12.
For any vertex x of a graph G let Δ(x) denote the set of vertices adjacent to x. We seek to describe the connected graphs G which are regular of valence n and in which for all adjacent vertices x and y |Δ(x) ∩ Δ(y)| = n ? 1 ? s. It is known that the complete graphs are the graphs for which s = 0. For any s, any complete many-partite graph, each part containing s + 1 vertices, is such a graph. We show that these are the only such graphs for which the valence exceeds 2s2 ? s + 1. The graphs satisfying these conditions for s = 1 or 2 are characterized (up to the class of trivalent triangle-free graphs.)  相似文献   

13.
Let f(x, y) be an indefinite binary quadratic form, d(f) its discriminant, m(f) the infimum of |f(x, y)| over all integers x, y not both zero, and put μ(f) = m(f)d(f)?12. In this paper we prove the existence of countably many disjoint open intervals Ij contained in 0 ≤ x ≤ 13 such that there is no f with μ(f) in Ij (j = 1, 2,…) and such that for any interval I containing two intervals Ij, Ik there is an f with μ(f) in I.  相似文献   

14.
We consider the differential equation ?(py′)′ + qy + λay + μby + f(x, y, y′) = 0, x? (α, γ) subject to the boundary conditions cos(α1) y(α) ? sin(α1) y′(α) = 0cos(β1) y(β) ? sin(β1) y′(β) = 0 β? (α, γ)cos(γ1) y(γ) ? sin(γ1) y′(γ) = 0. The functions p, g, a, b, and f are well-behaved functions of x; f is smooth and of “higher order” in y and y′; the scalars λ and μ are eigenparameters. With mild restrictions on a and b it is known that the linearized problem, f ≡ 0, has eigensolutions, (λ1, μ1, ψ1). In this paper we use an Implicit Function Theorem argument to establish the existence of a local branch of solutions, bifurcating from (λ1, μ1, 0), to the above nonlinear two-parameter eigenvalue problem.  相似文献   

15.
The induced path transit function J(u,v) in a graph consists of the set of all vertices lying on any induced path between the vertices u and v. A transit function J satisfies monotone axiom if x,yJ(u,v) implies J(x,y)⊆J(u,v). A transit function J is said to satisfy the Peano axiom if, for any u,v,w∈V,x∈J(v,w), yJ(u,x), there is a zJ(u,v) such that yJ(w,z). These two axioms are equivalent for the induced path transit function of a graph. Planar graphs for which the induced path transit function satisfies the monotone axiom are characterized by forbidden induced subgraphs.  相似文献   

16.
A new sufficient condition for Hamiltonian graphs   总被引:1,自引:0,他引:1  
The study of Hamiltonian graphs began with Dirac’s classic result in 1952. This was followed by that of Ore in 1960. In 1984 Fan generalized both these results with the following result: If G is a 2-connected graph of order n and max{d(u),d(v)}≥n/2 for each pair of vertices u and v with distance d(u,v)=2, then G is Hamiltonian. In 1991 Faudree–Gould–Jacobson–Lesnick proved that if G is a 2-connected graph and |N(u)∪N(v)|+δ(G)≥n for each pair of nonadjacent vertices u,vV(G), then G is Hamiltonian. This paper generalizes the above results when G is 3-connected. We show that if G is a 3-connected graph of order n and max{|N(x)∪N(y)|+d(u),|N(w)∪N(z)|+d(v)}≥n for every choice of vertices x,y,u,w,z,v such that d(x,y)=d(y,u)=d(w,z)=d(z,v)=d(u,v)=2 and where x,y and u are three distinct vertices and w,z and v are also three distinct vertices (and possibly |{x,y}∩{w,z}| is 1 or 2), then G is Hamiltonian.  相似文献   

17.
The concept of degree distance of a connected graph G is a variation of the well-known Wiener index, in which the degrees of vertices are also involved. It is defined by D(G)=∑xV(G)d(x)∑yV(G)d(x,y), where d(x) and d(x,y) are the degree of x and the distance between x and y, respectively. In this paper it is proved that connected graphs of order n≥4 having the smallest degree distances are K1,n−1,BS(n−3,1) and K1,n−1+e (in this order), where BS(n−3,1) denotes the bistar consisting of vertex disjoint stars K1,n−3 and K1,1 with central vertices joined by an edge.  相似文献   

18.
19.
The oscillatory and asymptotic behavior of solutions of a class of nth order nonlinear differential equations, with deviating arguments, of the form (E, δ) Lnx(t) + δq(t) f(x[g1(t)],…, x[gm(t)]) = 0, where δ = ± 1 and L0x(t) = x(t), Lkx(t) = ak(t)(Lk ? 1x(t))., k = 1, 2,…, n (. = ddt), is examined. A classification of solutions of (E, δ) with respect to their behavior as t → ∞ and their oscillatory character is obtained. The comparisons of (E, 1) and (E, ?1) with first and second order equations of the form y.(t) + c1(t) f(y[g1(t)],…, y[gm(t)]) = 0 and (an ? 1(t)z.(t)). ? c2(t) f(z[g1(t)],…, z[gm(t)]) = 0, respectively, are presented. The obtained results unify, extend and improve some of the results by Graef, Grammatikopoulos and Spikes, Philos and Staikos.  相似文献   

20.
Let G be a simple graph on n vertices. In this paper, we prove that if G satisfies the condition that d(x)+d(y)≥n for each xyE(G), then G has no nowhere-zero 3-flow if and only if G is either one of the five graphs on at most 6 vertices or one of a very special class of graphs on at least 6 vertices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号