首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many biologically active peptide secondary metabolites of bacteria are produced by modular enzyme complexes, the non‐ribosomal peptide synthetases. Substrate selection occurs through an adenylation (A) domain, which activates the cognate amino acid with high fidelity. The recently discovered A domain of an Anabaenopeptin synthetase from Planktothrix agardhii (ApnA A1) is capable of activating two chemically distinct amino acids (Arg and Tyr). Crystal structures of the A domain reveal how both substrates fit into to binding pocket of the enzyme. Analysis of the binding pocket led to the identification of three residues that are critical for substrate recognition. Systematic mutagenesis of these residues created A domains that were monospecific, or changed the substrate specificity to tryptophan. The non‐natural amino acid 4‐azidophenylalanine is also efficiently activated by a mutant A domain, thus enabling the production of diversified non‐ribosomal peptides for bioorthogonal labeling.  相似文献   

2.
The potential applications of non‐proteinogenic amino acids have increased continuously since the introduction of these molecules into a ribosomal translation system. An increasing number of studies concerning topics, such as the addition of an artificial function to a protein, cellular expression of a protein with an artificial residue, and development of an artificial peptide with a novel function, have been done using these molecules. Here, we describe recent studies that elucidate the compatibility of non‐proteinogenic amino acids with ribosomal translation. We also describe the development of a simple and high‐speed selection method and its potential application for the creation of a novel functional peptide with non‐proteinogenic amino acids. As these studies have expanded the diversity of the artificial peptide library and increased the speed of novel functional peptide selection, they will significantly facilitate the development of new molecules, such as pharmaceutical drug candidates and bioassay probes.

  相似文献   


3.
Combinatorial libraries of non-biological polymers and drug-like peptides could in principle be synthesized from unnatural amino acids by exploiting the broad substrate specificity of the ribosome. The ribosomal synthesis of such libraries would allow rare functional molecules to be identified using technologies developed for the in vitro selection of peptides and proteins. Here, we use a reconstituted E. coli translation system to simultaneously re-assign 35 of the 61 sense codons to 12 unnatural amino acid analogues. This reprogrammed genetic code was used to direct the synthesis of a single peptide containing 10 different unnatural amino acids. This system is compatible with mRNA-display, enabling the synthesis of unnatural peptide libraries of 10(14) unique members for the in vitro selection of functional unnatural molecules. We also show that the chemical space sampled by these libraries can be expanded using mutant aminoacyl-tRNA synthetases for the incorporation of additional unnatural amino acids or by the specific posttranslational chemical derivitization of reactive groups with small molecules. This system represents a first step toward a platform for the synthesis by enzymatic tRNA aminoacylation and ribosomal translation of cyclic peptides comprised of unnatural amino acids that are similar to the nonribosomal peptides.  相似文献   

4.
Here, we report a simple and economical tRNA aminoacylation system based upon a resin-immobilized ribozyme, referred to as Flexiresin. This catalytic system features a broad spectrum of activities toward various phenylalanine (Phe) analogs and suppressor tRNAs. Most importantly, it allows users to perform the tRNA aminoacylation reaction and isolate the aminoacylated tRNAs in a few hours. We coupled the Flexiresin system with a high-performance cell-free translation system and demonstrated protein mutagenesis with seven different Phe analogs in parallel. Thus, the technology developed herein provides a new tool that significantly simplifies the procedures for the synthesis of aminoacyl-tRNAs charged with nonnatural amino acids, which makes the nonnatural amino acid mutagenesis of proteins more user accessible.  相似文献   

5.
Evolutionary approaches are regularly used to isolate single molecules with desired activities from large populations of nucleic acids (approximately 10(15)). Several methods have also been developed to generate libraries of mRNA-encoded peptides and proteins for the in vitro selection of functional polypeptides. In principal, such mRNA encoding systems could be used with libraries of nonbiological polymers if the ribosome can be directed to polymerize tRNAs carrying unnatural amino acids. The fundamental problem is that current chemical aminoacylation systems cannot easily produce sufficient amounts of the numerous misacylated tRNAs required to synthesize a complex library of encoded polymers. Here, we show that bulk-aminoacylated tRNA can be transformed into N-monomethylated aminoacyl tRNA and translated. Because poly-N-methyl peptide backbones are refractory to proteases and are membrane permeable, our method provides an uncomplicated means of evolving novel drug candidates.  相似文献   

6.
Aminoacyl‐tRNA synthetases catalyze the first step of protein synthesis by aminoacylation of tRNAs. Remarkably, biological fragments of two human enzymes – tyrosyl‐tRNA synthetase (TyrRS) and tryptophanyl‐tRNA synthetase – are active cytokines produced by proteolysis or alternative splicing. One is a C‐terminal fragment of TyrRS (C‐TyrRS) that has potent activity for chemotaxis of leukocytes and monocytes and for stimulating production of other cytokines. Significantly, the cytokine activity of C‐TyrRS is absent in the context of the full‐length native protein. Unknown is the mechanism by which domain‐release from the dimeric native protein activates the cytokine. Here, the crystal structure of C‐TyrRS is presented at 2.2 Å resolution. This structure is similar to that of endothelial monocyte‐activating protein II (EMAP‐II), with critical residues of a heptapeptide element important for chemotaxis activity exposed on the first strand of a β‐barrel of the monomeric unit. In contrast, the same residues of C‐TyrRS are buried in an operational model for native TyrRS. Importantly, C‐TyrRS is shown here to be monomeric when released from dimeric native TyrRS. Further analysis suggests that the critical residues are exposed when tRNA is bound. Thus, tRNA binding to native TyrRS may be an additional or alternative way to activate cytokine signaling.  相似文献   

7.

Background  

When eukaryotic cells are deprived of amino acids, uncharged tRNAs accumulate and activate the conserved GCN2 protein kinase. Activated Gcn2p up-regulates the general amino acid control pathway through phosphorylation of the translational initiation factor eIF2. In Saccharomyces cerevisiae, Gcn2p is the only kinase that phosphorylates eIF2 to regulate translation through this mechanism. We addressed changes in yeast growth and tRNA aminoacylation, or charging, during amino acid depletion in the presence and absence of GCN2. tRNA charging was measured using a microarray technique which simultaneously measures all cytosolic tRNAs. A fully prototrophic strain, and its isogenic gcn2Δ counterpart, were used to study depletion for each of the 20 amino acids, with a focus on Trp, Arg, His and Leu, which are metabolically distinct and together provide a good overview on amino acid metabolism.  相似文献   

8.
The manipulation of natural product biosynthetic pathways is a powerful means of expanding the chemical diversity of bioactive molecules. 2,5‐diketopiperazines (2,5‐DKPs) have been widely developed by medicinal chemists, but their biological production is yet to be exploited. We introduce an in vivo method for incorporating non‐canonical amino acids (ncAAs) into 2,5‐DKPs using cyclodipeptide synthases (CDPSs), the enzymes responsible for scaffold assembly in many 2,5‐DKP biosynthetic pathways. CDPSs use aminoacyl‐tRNAs as substrates. We exploited the natural ability of aminoacyl‐tRNA synthetases to load ncAAs onto tRNAs. We found 26 ncAAs to be usable as substrates by CDPSs, leading to the enzymatic production of approximately 200 non‐canonical cyclodipeptides. CDPSs constitute an efficient enzymatic tool for the synthesis of highly diverse 2,5‐DKPs. Such diversity could be further expanded, for example, by using various cyclodipeptide‐tailoring enzymes found in 2,5‐DKP biosynthetic pathways.  相似文献   

9.
Aminoacyl-tRNA synthetase (ARS) ribozymes have potential to develop a novel genetic coding system. Although we have previously isolated such a ribozyme that recognizes aromatic amino acids, it could not be used as a versatile catalyst due to its limited ability of aminoacylation to a particular tRNA used for the selection. To overcome this limitation, we used a combination of evolutionary and engineering approaches to generate an optimized ribozyme. The ribozyme, consisting of 45 nucleotides, displays a broad spectrum of activity toward various tRNAs. Most significantly, this ribozyme is able to exhibit multiple turnover activity and charge parasubstituted Phe analogs onto an engineered suppressor tRNA (tRNA(Asn)(CCCG)). Thus, it provides a useful and flexible tool for the custom synthesis of mischarged tRNAs with natural and nonnatural amino acids.  相似文献   

10.
The first total syntheses of the bioactive cyclodepsipeptides ohmyungsamycin A and B are described. Key features of our synthesis include the concise preparation of a linear cyclization precursor that consists of N‐methyl amides and non‐proteinogenic amino acids, and its macrolactamization from a bent conformation. The proposed structure of ohmyungsamycin B was revised based on its synthesis. The cyclic core of the ohmyungsamycins was shown to be responsible for the excellent antituberculosis activity, and ohmyungsamycin variants with truncated chains were evaluated for their biological activity.  相似文献   

11.
Directed C?H functionalization has been realized as a complementary tool to the traditional approaches for a straightforward access of non‐proteinogenic amino acids; albeit such a process is restricted mostly up to the γ‐position. In the present work, we demonstrate the diverse (hetero)arylation of amino acids and analogous aliphatic amines selectively at the remote δ‐position by tuning the reactivity controlled by ligands. An organopalladium δ‐C(sp3)?H activated intermediate has been isolated and crystallographically characterized. Mechanistic investigations carried out experimentally in conjunction with computational studies shed light on the difference in the mechanistic picture depending on the substrate structure.  相似文献   

12.
Calcium-dependent antibiotics (CDA) are cyclic lipopeptides assembled by nonribosomal peptide synthetase (NRPS) enzymes. Active site modification of the 3-methyl glutamate activating adenylation (A) domain of the CDA NRPS enables the incorporation of synthetic 3-methyl glutamine into CDA. This provides the first example of how A-domains can be engineered to introduce synthetic "non-natural" amino acids into nonribosomal peptides.  相似文献   

13.
Increased tolerance of enzymes towards thermal and chemical stress is required for many applications and can be achieved by macrocyclization of the enzyme resulting in the stabilizing of its tertiary structure. Thus far, macrocyclization approaches utilize a very limited structural diversity, which complicates the design process. Herein, we report an approach that enables cyclization through the installation of modular crosslinks into native proteins composed entirely of proteinogenic amino acids. Our stabilization procedure involves the introduction of three surface‐exposed cysteine residues, which are reacted with a triselectrophile, resulting in the in situ cyclization of the protein (INCYPRO). A bicyclic version of sortase A was designed that exhibits increased tolerance towards thermal as well as chemical denaturation, and proved to be efficient in protein labeling under denaturing conditions. In addition, we applied INCYPRO to the KIX domain, resulting in up to 24 °C increased thermal stability.  相似文献   

14.
Bioinorganic chemists aspire to achieve the same exquisite and highly controlled inorganic chemistry featured in biology. An exciting mimetic approach involves the use of miniature artificial protein scaffolds designed de novo (often based on the coiled coil (CC) scaffold), for reproducing native metal ion sites and their function. Recently, there is increased interest, instead, in the design of xeno‐metal sites within CC assemblies. This involves incorporating either non‐biological metal ions, cofactors or non‐proteinogenic amino acid ligands for metal ion coordination, whilst retaining a minimal CC protein scaffold. Using this approach, one should be able to create functional designs with unique and unusual properties, which combine the advantages of both biology and ‘traditional’ non‐biological inorganic chemistry. It is the recent progress with respect to the design of xeno‐metallo CCs which will be discussed in this Focus Review.  相似文献   

15.
A method was developed for the micropreparative separation of individual species of tRNA using reversed-phase high-performance liquid chromatography on large pore spherical silica bonded with C3 alkyl chains. Columns were eluted with linear gradients of decreasing sodium chloride and increasing methanol concentrations. The decreasing salt gradient gradually abolished hydrophobic interactions and a significantly higher selectivity was thus obtained when compared with increasing gradients of salts usually employed in reversed-phase separations of tRNA. The acceptance of tRNA fractions was tested by charging them with fifteen different amino acids. Significantly different separations were obtained with tRNA from Escherichia coli and from rat liver. tRNAGlu and tRNATyr from E. coli were obtained in a pure form, all other tRNAs were more or less contaminated by adjoining tRNAs for other amino acids. Rechromatography under suitable isocratic conditions was required to obtain pure tRNA species from rat liver. Isoaccepting tRNAs for several amino acids were separated from rat liver. The method described seems suitable for preliminary fractionations of complex mixtures of tRNA and for a simple purification of isoaccepting species if the presence of tRNAs for other amino acids is not an hindrance.  相似文献   

16.
Formylation is an important part of ribosomal peptide synthesis of prokaryotes. In nonribosomal peptide synthesis, however, N-formylation is rather unusual and therefore so far unexplored. In this work, the first module of the linear gramicidin nonribosomal peptide synthetase, LgrA1, consisting of a hypothetical formylation domain, an adenylation, and a peptidyl carrier protein domain was tested for formyltransferase activity in vitro. We demonstrate here that the putative formylation domain does indeed transfer the formyl group of formyltetrahydrofolate (fH4F) onto the first amino acid valine using both cofactors N10- and N5-fH4F, respectively. Most important, the necessity of the formylated starter unit formyl-valine for the initiation of the gramicidin biosynthesis was tested by elongation assays with the bimodular system from LgrA. By omitting the formyl group donor, no condensation product of valine with the subsequent building block glycine was detected, whereas the dipeptide formyl-valyl-glycine was found when assayed in the presence of either formyl donor. The proven formylation activity of the first domain of LgrA represents a novel tailoring enzyme in nonribosomal peptide synthesis.  相似文献   

17.
The initiation module of non-ribosomal peptide synthetases (NRPS) selects and activates the first amino acid and serves as the aminoacyl donor in the first peptide bond-forming step of the NRPS assembly line. The gramicidin S synthetase initiation module (PheATE) is a three-domain subunit, recognizing L-phenylalanine (L-Phe) and activating it (by adenylation domain) as tightly bound L-phenylalanyl-adenosine-5'-monophosphate diester (L-Phe-AMP), transferring it to the HS-phosphopantetheine arm of the holo-thiolation (holo-T) domain, and then epimerizing it (by epimerization domain) to the D-Phe-S-4'-Ppant-acyl enzyme. In this study, we have assayed the selectivity of the PheATE adenylation domain with a number of proteinogenic amino acids and observed that three additional amino acids, L-Tyr, L-Trp, and L-Leu, were activated to the aminoacyl-AMPs and transferred to the HS-phosphopantetheine arm of the holo-T domain. Hydrolytic editing of noncognate aminoacyl-AMPs and/or aminoacyl-S-4'-Ppant-acyl enzymes by the enzyme was not observed by three different assays for adenylation domain function. The microscopic reaction rates and thermodynamic equilibrium constants obtained from single-turnover studies of reactions of L-Phe, L-Trp, L-Tyr, and L-Leu with holoPheATE allowed us to construct free energy profiles for the reactions, revealing the kinetic and thermodynamic basis for substrate recognition and selection. In particular, the rates of epimerization of the L-aminoacyl-S-enzyme to the D-aminoacyl-S-enzyme intermediate showed reductions of 245-, 300-, and 540-fold for L-Trp, L-Tyr, and L-Leu respectively, suggesting that the epimerization domain is an important gatekeeper for generation of the D-Phe-S-enzyme that starts gramicidin S chain growth.  相似文献   

18.
The outer‐coordination sphere of enzymes acts to fine‐tune the active site reactivity and control catalytic rates, suggesting that incorporation of analogous structural elements into molecular catalysts may be necessary to achieve rates comparable to those observed in enzyme systems at low overpotentials. In this work, we evaluate the effect of an amino acid and dipeptide outer‐coordination sphere on [Ni(PPh2NPh‐R2)2]2+ hydrogen production catalysts. A series of 12 new complexes containing non‐natural amino acids or dipeptides was prepared to test the effects of positioning, size, polarity and aromaticity on catalytic activity. The non‐natural amino acid was either 3‐(meta‐ or para‐aminophenyl)propionic acid terminated as an acid, an ester or an amide. Dipeptides consisted of one of the non‐natural amino acids coupled to one of four amino acid esters: alanine, serine, phenylalanine or tyrosine. All of the catalysts are active for hydrogen production, with rates averaging ~1000 s?1, 40 % faster than the unmodified catalyst. Structure and polarity of the aliphatic or aromatic side chains of the C‐terminal peptide do not strongly influence rates. However, the presence of an amide bond increases rates, suggesting a role for the amide in assisting catalysis. Overpotentials were lower with substituents at the N‐phenyl meta position. This is consistent with slower electron transfer in the less compact, para‐substituted complexes, as shown in digital simulations of catalyst cyclic voltammograms and computational modeling of the complexes. Combining the current results with insights from previous results, we propose a mechanism for the role of the amino acid and dipeptide based outer‐coordination sphere in molecular hydrogen production catalysts.  相似文献   

19.
Twelve peptides, 1 – 12 , have been synthesized, which consist of alternating sequences of α‐ and β‐amino acid residues carrying either proteinogenic side chains or geminal dimethyl groups (Aib). Two peptides, 13 and 14 , containing 2‐methyl‐3‐aminobutanoic acid residues or a ‘random mix’ of α‐, β2‐, and β3‐amino acid moieties were also prepared. The new compounds were fully characterized by CD (Figs. 1 and 2), and 1H‐ and 13C‐NMR spectroscopy, and high‐resolution mass spectrometry (HR‐MS). In two cases, 3 and 14 , we discovered novel types of turn structures with nine‐ and ten‐membered H‐bonded rings forming the actual turns. In two other cases, 8 and 11 , we found 14/15‐helices, which had been previously disclosed in mixed α/β‐peptides containing unusual β‐amino acids with non‐proteinogenic side chains. The helices are formed by peptides containing the amino acid moiety Aib in every other position, and their backbones are primarily not held together by H‐bonds, but by the intrinsic conformations of the containing amino acid building blocks. The structures offer new possibilities of mimicking peptide–protein and protein–protein interactions (PPI).  相似文献   

20.
The GE81112 tetrapeptides are a small family of unusual nonribosomal peptide congeners with potent inhibitory activity against prokaryotic translation initiation. With the exception of the 3‐hydroxy‐l ‐pipecolic acid unit, little is known about the biosynthetic origins of the non‐proteinogenic amino acid monomers of the natural product family. Here, we elucidate the biogenesis of the 4‐hydroxy‐l ‐citrulline unit and establish the role of an iron‐ and α‐ketoglutarate‐dependent enzyme (Fe/αKG) in the pathway. Homology modelling and sequence alignment analysis further facilitate the rational engineering of this enzyme to become a specific 4‐arginine hydroxylase. We subsequently demonstrate the utility of this engineered enzyme in the synthesis of a dipeptide fragment of the antibiotic enduracidin. This work highlights the value of applying a bioinformatics‐guided approach in the discovery of novel enzymes and engineering of new catalytic activity into existing ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号